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ABSTRACT OF THE DISSERTATION

How to encode a tree

by

Sally Picciotto

Doctor of Philosophy in Mathematics

University of California San Diego, 1999

Professor Peter Doyle, Chair

We construct bijections giving three \codes" for trees. These codes follow natu-

rally from the Matrix Tree Theorem of Tutte and have many advantages over the

one produced by Pr�ufer in 1918. One algorithm gives explicitly a bijection that

is implicit in Orlin's manipulatorial proof of Cayley's formula (the formula was

actually found �rst by Borchardt). Another is based on a proof of Knuth. The

third is an implementation of Joyal's pseudo-bijective proof of the formula, and is

equivalent to one previously found by E�gecio�glu and Remmel. In each case, we

have at least two algorithms, one of which involves hands-on manipulations of the

tree while the other involves a combinatorial and linear algebraic manipulation of

a matrix.
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Chapter 1

Introduction

This dissertation is a contribution to the history of progressing from algebraic

proofs to bijective proofs. In particular, for theorems involving graphs, there is

a long history of proofs using matrices. We start with linear algebra, but auto-

matically something is going on beneath the surface that turns out to be a simple

bijection.

1.1 De�nitions

De�nition 1 A directed graph is a quadruple G = (V;E; �; !), where the ele-

ments of the set V are called vertices and the elements of the set E are called

edges, and � and ! are the boundary maps from E to V . If e 2 E, then �(e) 2 V

is the initial vertex or tail of e and !(e) 2 V is the terminal vertex or head of e.

Note that this de�nition allows for multiple edges with tail v1 and head v2. An

edge in a directed graph can be represented by an arrow pointing from the initial

vertex to the terminal vertex.

Example:

1
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2 --

??6
4

�
�	1 - 3

@@I�

5 -6
�

8

?

7
@
@R
@
@R

- 9 -
�

�	

?

e

�

0 -

Here the vertices are labelled with integers. The edge labelled e satis�es �(e) = 9

and !(e) = 6. An edge is said to point from or out of its tail and point to or into

its head. This dissertation deals with directed graphs whose vertices are labelled

0; 1; : : : ; n. Sometimes the edges have weights associated to them. Sometimes we

refer to a directed graph as simply a graph.

De�nition 2 A function W : E ! S, where S is any set, de�nes a weight for

each edge.

De�nition 3 The indegree of a vertex in a directed graph is the number of edges

of which the vertex is the head, and the outdegree is the number of edges of which

the vertex is the tail.

De�nition 4 A path in a directed graph is an alternating sequence of vertices and

edges v1; e1; v2; e2; : : : ; e4; vr+1 where vi is the tail of the edge ei and vi+1 is the head

of the edge ei.

De�nition 5 A cycle in a directed graph is a closed path (a path where v1 = vr+1).

A cycle with only one edge, v ! v, is called a loop.

De�nition 6 The complete digraph (with a given number of vertices) is a directed

graph with exactly one edge v1! v2 for each pair of vertices.

De�nition 7 A rooted tree is a digraph with a unique path connecting each vertex

to the (unique) vertex with outdegree 0 called the root. Any vertex whose indegree

is 0 is called a leaf.
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Unless otherwise noted, all trees are rooted at 0. Any \free tree" (an undirected

connected graph with no cycles) can be transformed uniquely into a tree rooted at

0 by directing all edges toward 0.

Example:

0

4

?

5
@
@R

2

?

7
�

�	

6 3
@
@R

�
�	

1

?

In this tree, the leaves are 1, 3, 5, and 7.

De�nition 8 The weight of a tree is the product of the weights of its edges.

In the example above, if the weight of the edge i! j is aij then the weight of the

tree is a16a24a32a40a54a62a74.

De�nition 9 A spanning tree of a graph G is a tree whose vertices are the same

as the vertices of G and whose edges are a subset of the edges of G.

De�nition 10 A functional digraph is a directed graph where each vertex is the

tail of exactly one edge.

In a functional digraph, there may be many edges pointing into a vertex but only

one pointing out. A functional digraph is a collection of disjoint cycles whose

vertices are roots of trees leading into them.

Example: This is a functional digraph:

2

?
4

�
�	1 - 3

@@I

5 -6
�

8

?

7
@
@R

9
�

�	

0 -
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A functional digraph represents a function f : f0; 1; 2; : : : ; ng ! f0; 1; 2; : : : ; ng,

where f(i) = j if and only if the edge i! j is in the digraph.

De�nition 11 Since each vertex i (6= 0 in a rooted tree) in a functional digraph

is the initial vertex for exactly one edge, it makes sense to de�ne succ(i) = j to

be the terminal vertex of the edge i! j in the (tree or) functional digraph.

In the tree example above, succ(6) = 2; in the functional digraph, succ(6) = 5.

De�nition 12 A happy functional digraph is a functional digraph without an edge

out of 0, and in which 1 is in the same connected component as 0.

A happy functional digraph is a collection of trees leading into disjoint cycles,

together with a tree rooted at 0 and also containing 1.

De�nition 13 An ascent is an edge i! j where j > i.

De�nition 14 An Escher cycle is a cycle in which each edge except one is an

ascent.

Example:

9 -2
@
@R5
�

�	6�7@
@I
8
�
��

Note that each vertex is smaller than its successor, except for the greatest vertex

in the cycle, 9.

De�nition 15 The \na��ve code" for a tree is de�ned to be

na��ve = (succ(1); succ(2); : : : ; succ(n)):

The \na��ve code" requires no work to �nd, but not every n-tuple corresponds to

a tree. For example, the na��ve code (3,2,0,5,4) would correspond to the following

graph:
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1

?
3

?
0

2 -

4 - 5�

This graph is not a tree because it has a loop and a cycle. It is, however, a happy

functional digraph.

We borrow the notation of discrete geometry for some of the proofs in this

paper:

De�nition 16 A signed set S = S+tS�, where t represents the disjoint union, is

an oriented zero-dimensional complex (that is, a collection of distinguishable points

that can be partitioned into two subsets, one containing the elements considered

\positive" and the other containing the elements considered \negative.").

De�nition 17 Let T = T+ t T� and S = S+ t S� be two signed sets. Their

di�erence is de�ned to be the disjoint union of the sets, with the following signs on

elements of the union:

(S � T )+ = S+ t T� and (S � T )� = S� t T+:

Example: If S = fa; b; c;�d;�eg and T = fx;�y;�zg, then

S � T = fa; b; c; y; z;�d;�e;�xg:

De�nition 18 The Kronecker delta function �xy takes value 1 if x = y and 0

otherwise.

De�nition 19 An involution � : S ! S is a map on a signed set S that satis�es

� � �(x) = x for all x 2 S.

De�nition 20 An involution is sign-reversing if for any x 2 S+, �(x) 2 S� and

for any x 2 S�, �(x) 2 S+.

A sign-reversing involution does not have any �xed points.
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1.2 Some History

In 1860, Borchardt [1] discovered through evaluation of a certain determinant

(namely, the principal (0,0)-minor of the matrix Tutte used a hundred years later,

see x1.4) that the number of labelled trees is (n+ 1)
n�1

. Cayley [2] independently

derived this formula in 1889, and his short paper on the topic alludes to a bijection.

However, the invention of a coding algorithm for trees, by Pr�ufer in 1918, was the

�rst combinatorial proof that this is the formula for the number of trees. His idea

was that any tree can be encoded by a vector: an ordered (n � 1)-tuple of labels

chosen from 0 to n. This is done in such a way that the tree can be recovered from

the code and vice versa. The number of possible codes (which is of course equal

to the number of possible trees) is (n+ 1)n�1.

1.3 The Pr�ufer Code

In 1918, Pr�ufer [9] gave the following bijective proof of Cayley's formula.

Given a labelled tree, we suppose that the least leaf is labelled i1, and that

succ(i1) = j1. Remove i1 and its edge from the tree, and let i2 be the least leaf

on the new tree, with succ(i2) = j2. If we repeat this process until there are only

two vertices left, the Pr�ufer code (j1; : : : ; jn�1) uniquely determines the tree.

To recover the tree from any (n� 1)-tuple, we note that for each vertex except

the root, the number of occurrences of that label in the Pr�ufer code is equal to

the indegree of that vertex. The number of occurrences of 0 in the code is one

less than the indegree of 0. There must be at least two labels that don't appear

in the code, since there are n+ 1 vertices and only n� 1 entries in the code. Any

nonzero vertex not occurring in the code is a leaf in the original tree, so we know

that the least one, i1, has succ(i1) = j1, the �rst vertex in the code. We can also

tell whether any new leaves were formed when i1 was removed because we know

the indegree of j1. Step by step, from beginning to end, we can reconstruct each

edge of the tree.
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Hence, the Pr�ufer code gives a bijection between trees with n+ 1 vertices and

(n � 1)-tuples of the vertex-labels. Since the number of (n � 1)-tuples is clearly

(n+ 1)n�1, this bijection proves the formula that Borchardt discovered.

However, the algorithm is a bit unnatural. The inverse does not undo the steps

in the backwards order; we have to look at the overall code and decipher what had

to be true in the tree by starting from the beginning of the code and working our

way to the end.

1.3.1 An example

Consider the tree:

0

4

?

5
@
@R

2

?

7
�

�	

6 3
@
@R

�
�	

1

?

with leaves f1; 5; 3; 7g. Step by step, we build up the code and remove leaves from

the tree. First, we see that 1 is the least leaf, so we write down succ(1) and remove

1 from the tree.

0

4

?

5
@
@R

2

?

7
�

�	

6 3
@
@R

�
�	 Code so far=(6)

Here, the removal of 1 created a new leaf. Now the leaves are f5; 6; 3; 7g, so the

new least leaf is 3.
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0

4

?

5
@
@R

2

?

7
�

�	

6
@
@R Code so far=(6,2)

The next leaf to fall o� of the tree is 5, leaving us with the following tree and code:

0

4

?

2

?

7
�

�	

6
@
@R Code so far=(6,2,4)

No new leaves have been created, so the smallest leaf now is 6 and we remove it.

0

4

?

2

?

7
�

�	 Code so far=(6,2,4,2)

Now that we've removed both 3 and 6, the indegree of 2 is 0. We remove 2 to

obtain:

0

4

?

7
�

�	 Code so far=(6,2,4,2,4),

and �nally:

0

4

?
Pr�ufer Code=(6,2,4,2,4,4).
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1.3.2 Finding the tree for a code

To get the other direction of the bijection, we start by counting occurrences of

each vertex label in the code to �nd the list of indegrees. (The indegree of 0 is one

greater than the number of occurrences of 0 in the code.) For the code (6,2,4,2,4,4)

we have

Vertex Indegree

0 1

1 0

2 2
3 0
4 3

5 0
6 1
7 0

The four vertices with indegree of 0 are the leaves on the original tree. So far, our

knowledge consists of this:

0
?

2
@
@R

�
�	

4
@
@R

�
�	
?

6
?

L1 = f1; 3; 5; 7g

P1 = (6; 2; 4; 2; 4; 4)

where Pi is the code at step i and Li is the Leaf Set at step i. The Leaf Set Li

consists of all the vertices whose labels are not listed in Pi and whose outgoing

edges have yet to be determined. It is actually the set of vertices that are leaves

after all of the previous \least leaves" have been removed.

Since the smallest leaf in this example is 1, and we know the code starts with

6, we can see that the edge whose head is 6 must have tail 1. We also see that

removing 1 from the tree created a new leaf, 6, so we add 6 to the Leaf Set.
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0
?

2
@
@R

�
�	

4
@
@R

�
�	
?

6
?

1

L2 = f3; 5; 6; 7g

P2 = (2; 4; 2; 4; 4)

The least leaf of L2 is 3, so its edge points to 2, the �rst element in P2. Removing

3 does not create a new leaf because 2 appears twice in P2.

0
?

2
@
@R

3
�

�	

4
@
@R

�
�	
?

6
?

1

L3 = f5; 6; 7g

P3 = (4; 2; 4; 4)

The least leaf of L3 is 5. It will point at 4, and removing 5 will not create a new

leaf.

0
?

2
@
@R

3
�

�	

4
@
@R

5
�

�	
?

6
?

1

L4 = f6; 7g

P4 = (2; 4; 4)

Once we remove 5, the smallest element of L4 is 6, so there is an edge 6! 2. Also,

removing 6 will turn 2 into a leaf, since this is the only occurrence of 2 in P4.

0
?

2
@
@R

6

1

?
3
�

�	

4
@
@R

5
�

�	
?

L5 = f2; 7g

P5 = (4; 4)

The smallest element of L5 is 2, so it must point at 4. Since there is still an

unaccounted-for edge into 4, removing 2 does not make 4 into a leaf. Thus 7 will
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be the only leaf left after that step.

0
?

2
@
@R

6

1

?
3

�
�	

4
@
@R

5
�

�	
?

L6 = f7g

P6 = (4)

Now, since 7 is the smallest leaf, its edge has head at 4. From that we can also

conclude that the edge 4 ! 0 is the remaining edge in the tree. In general,

whichever vertex did not yet have an outgoing edge will have to point to 0 at the

end.

0
?

2
@
@R

6

1

?
3

�
�	

4
@
@R

5
�

�	

7

?

Given the code, we were able to reconstruct the tree, and this can be done no

matter what (n � 1)-tuple we are given. It is clear that this algorithm is the

inverse of the algorithm given by Pr�ufer.

1.4 The Matrix Tree Theorem

In 1948, Tutte [13] associated a matrix AT to the complete loopless directed

graph on vertices f0; : : : ; ng, with edge from i to j of weight aij. The general
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matrix is AT = (Aij), with i and j indexed from 0 to n:

Aij =

8>><
>>:
�aij i 6= jX
k 6=i;0�k�n

aik i = j:

The diagonal entry in row i is the sum of the weights of the edges with tail at

i. The row sums of such a matrix are zero, so the determinant of the matrix is

zero. However, the following result by Tutte is very useful. Denote by A the n�n

submatrix of AT obtained by crossing out its zeroth row and column.

Theorem 1 (Matrix Tree Theorem) The determinant of A is the sum of the

weights of all spanning trees (rooted at vertex 0) of the graph.

Zeilberger [14] published a nice bijective proof, also discovered independently by

Garsia. A bijective proof of a more general version of the theorem is due to Chaiken

[3]. We will think of the entries in our matrices as being indeterminates. When the

i; j-entry of the matrix (not on the diagonal) consists of a sum of k indeterminates,

the matrix corresponds to a graph with k edges i ! j, each having monomial

weight. Note that if aij is an integer, it can represent the number of edges i ! j

in a graph (if aij = 0, then there is no edge i! j). Then det(A) is the number of

spanning trees of the graph.

Throughout this dissertation we will be de�ning signed sets that come from

matrices. Each element of a matrix set is an array consisting of exactly one mono-

mial entry from the matrix in each row and each column. Each array comes with

the sign corresponding to the array position in the determinant. An element of

a matrix set can be thought of as a signed permutation times a diagonal matrix.

The matrix set corresponding to a matrix M consists of all possible such arrays.

The matrix Â = (aij) (where i and j are indexed from 0 to n) has the inde-

terminate weight corresponding to the edge i! j in its i; j-entry. If we formally

subtract this matrix from the diagonal (n+1)�(n+1) matrix D̂ whose ith diagonal

entry is
P

n

j=0 aij, without simplifying, then we obtain a matrix D̂ � Â whose row
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sums are zero: this matrix corresponds to the complete directed graph with loops.

It di�ers from Tutte's matrix only by the presence of aii � aii in the ith diagonal

entry{essentially we have added zero to each diagonal entry in Tutte's matrix.

Obviously this doesn't change the (0; 0)-minor; loops never appear in trees.

Zeilberger's bijective proof [14] of the Matrix Tree Theorem hinges on the idea

that every functional digraph with a cycle corresponds to an array some of whose

entries occur both on the diagonal and o� the diagonal of Tutte's submatrix A,

with opposite signs. In the determinant, these terms would cancel. He e�ectively

introduces a surjective map from the matrix set corresponding to A to the set of

digraphs representing functions from f1; 2; : : : ; ng to f0; 1; : : : ; ng according to the

following rule: The entry in row i of the array represents the edge from i, and if

this entry is �bj, either on or o� the diagonal, then the edge is i! j.

Example: For n = 2, the submatrix of A is
�
a10+a12 �a12
�a21 a20+a21

�
. The matrix set is�

[ a10 a20
] ; [ a10 a21

] ; [ a12 a20
] ; [ a12 a21

] ;
�

�a12
�a21

�	
and the surjective map is given in the following diagram:"

a10

a20

#
�!

1

0

2
@
@R

�
�	

"
a10

a21

#
�!

1

0

2
@
@R

�

"
a12

a20

#
�!

1

0

2-
�

�	

"
a12

a21

#
�!

1

0

2-
�

"
�a12

�a21

#
�
��

Note that the only graph with a cycle gets mapped to twice. Since we are only

interested in counting trees, we can eliminate graphs with cycles and instead map
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the two preimages to one another.

Using these ideas, Zeilberger constructs what amounts to a sign-reversing in-

volution on the matrix set corresponding to A minus the set of trees.

In our case, we think of A as being morally equal to D̂ � Â, and \on the diag-

onal" as meaning \occurring in D̂" and \o� the diagonal" as meaning \occurring

in the matrix �Â." By de�ning these terms in this way, we allow for loops. Most

of our algorithms for �nding codes using a matrix method will require us to know

how to \toggle the diagonality" of a cycle. Toggling the diagonality of a cycle in an

array in a matrix set simply entails �nding the unique array in the same set that

satis�es two conditions: (1) the variable corresponding to any edge not in the cycle

is in the same location as in the original array, and (2) any variable corresponding

to an edge that is in the cycle occurs within the same row but has the opposite

\diagonality" from its location in the original array. Toggling the diagonality of

a cycle is a sign-reversing involution on the matrix set's subset corresponding to

graphs containing cycles. An o�-diagonal cycle will always come with a negative

sign because a cycle of odd length has a permutation sign of +1, but an odd num-

ber of negative terms; a cycle of even length has an even number of negative terms

but a negative sign.

Example:

0

2

?
4

�
�	1 - 3

@@I
 !

2
666664
a13

a24

a34

a41

3
777775 !

2
666664

�a13

a24

�a34

�a41

3
777775.

The graph above contains a cycle; the elements of the matrix set corresponding

to the (0,0)-minor of D̂ � Â that correspond to this tree are both above: the one

on the left consists entirely of entries from D̂ while the one on the right has some

entries from �Â. a24 corresponds to the edge 2! 4 which is not in a cycle, so it

appears on the diagonal in both arrays, but the cycle (134) could appear either on
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or o� the diagonal. The sign of the �rst array is +1 because all entries are on the

diagonal. The second array turns out to be negative because the 3-cycle has sign

+1 but there are 3 negative entries.

For loops, it is a little bit less clear:

Example:

0

2

?

1
@
@R

4

?

3 -

 !

2
666664
a10

a20

a33

a41

3
777775 !

2
666664
a10

a20

�a33

a41

3
777775.

Here, although the entries are all apparently on the diagonal, we think of the

diagonality of the loop at 3 as having changed from the �rst matrix to the second.

The �rst array consists of entries only from D̂ while the �a33 in the second one is

an entry from �Â.

If a graph has more than one cycle (including loops), we raise the issue of which

cycle's diagonality gets toggled. Zeilberger arbitrarily chose to move the cycle with

the smallest element in it; we arbitrarily choose to move the cycle with the largest.

All choices are equally valid but result in slightly di�erent codes. The choice of

the largest element in a cycle is consistent with some tree surgical methods that

give the same bijections as our matrix methods.

1.5 Linear Algebra Setup

If we set aij = bj for all i; j in Tutte's matrix AT , we get a matrix with each

entry in column j = �bj except on the diagonal. We can calculate the (0; 0)-minor

using row and column operations.

If we ignore the zeroth row and column, we could �nd the determinant using
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the following operations. We start with the submatrix A:

det

2
664
b0 + b2 + b3 �b2 �b3

�b1 b0 + b1 + b3 �b3

�b1 �b2 b0 + b1 + b2

3
775 :

Subtract row 2 from row 3:

= det

2
664
b0 + b2 + b3 �b2 �b3

�b1 b0 + b1 + b3 �b3

0 �b0 � b1 � b2 � b3 b0 + b1 + b2 + b3

3
775

Add column 3 to column 2:

= det

2
664
b0 + b2 + b3 �b2 � b3 �b3

�b1 b0 + b1 �b3

0 0 b0 + b1 + b2 + b3

3
775

Subtract row 1 from row 2:

= det

2
664

b0 + b2 + b3 �b2 � b3 �b3

�b0 � b1 � b2 � b3 b0 + b1 + b2 + b3 0

0 0 b0 + b1 + b2 + b3

3
775

Add column 2 to column 1:

= det

2
664
b0 �b2 � b3 �b3

0 b0 + b1 + b2 + b3 0

0 0 b0 + b1 + b2 + b3

3
775

(Call this last matrix M .) Now it is evident (since we have an upper-triangular

matrix) that detM = b0 [b0 + b1 + b2 + b3]
2. In general, detM = b0

hP
n

j=0 bj

i
n�1

.

The number of trees is (n+ 1)(n�1), and it is clear that this is also the number of

terms in detM (we have an (n � 1)-fold product of a sum of n + 1 terms). Let

sequences of the bj as read down the diagonal of the matrix be called \codes." One

would like to have a bijection relating these codes to trees. Each array of diagonal

entries from M should correspond to a tree.
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Note that in a matrix with this much redundancy, there are many di�erent

sequences of row and column operations that can lead to an easily calculated

determinant.

In the course of this research we found that allowing loops was more natural.

Consequently, instead of Tutte's matrix A we use variations on D̂ � Â as de�ned

in x1.4. For our purposes, we will set aij = bj in Â and aij = Bj in D̂. At the end

of the long process of row and/or column operations, we set Bj = bj.



Chapter 2

The Happy Code

We can use the Matrix Tree Theorem to �nd a more \natural" code than

the Pr�ufer code by expanding on Knuth's ideas in [7]. As mentioned in x1.5, we

specialize aij to be bj in Â and Bj in D̂. Following Knuth, we introduce another

indeterminate �, which will be a placeholder, by putting �� b0 in the (0; 0)-entry

in the matrix, calling this new matrixM 0
0. We keep in mind that we are interested

in the coe�cient of � in the determinant of M 0
0, since it is equal to the (0; 0)-minor

of the original Matrix Tree Theorem matrix. We will do row operations to form a

series of matrices, all with the same determinant. The coe�cient of � in the �nal

determinant represents the sum of the weights of all the trees, because that was

true of the original matrix; the row operations do not a�ect that. The sequence of

matrices is formed by subtracting the zeroth row from each of the other rows, one

at a time. (In [7], the row operations are all performed simultaneously.)

Speci�cally, we begin with the matrix M 0
0 whose i; j-entry is �bj when i 6= j

and whose ith diagonal entry is �bi + �i0�+ (1 � �i0)
P

n

j=0Bj. (If Bj is set equal

to bj then the row sums are zero for rows 1 through n. Using Bj for the diagonal

18
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entries enables us to keep track of loops.) Let B =
P

n

j=0Bj.

M 0
0 =

2
66666666664

�� b0 �b1 �b2 ::: �bn

�b0 B � b1 �b2 ::: �bn

: : : ::: :

: : : ::: :

: : : ::: :

�b0 �b1 �b2 ::: B � bn

3
77777777775
:

Subtract row 0 from row n, without cancelling anything. Then

M1 =

2
66666666664

�� b0 �b1 �b2 ::: �bn

�b0 B � b1 �b2 ::: �bn

: : : ::: :

: : : ::: :

: : : ::: :

��+ b0 � b0 b1 � b1 b2 � b2 ::: bn +B � bn

3
77777777775
:

The next step consists of arithmetic within entries:

M 0
1 =

2
66666666664

�� b0 �b1 �b2 ::: �bn

�b0 B � b1 �b2 ::: �bn

: : : ::: :

: : : ::: :

: : : ::: :

�� 0 0 ::: B

3
77777777775
:

Next, subtract row 0 from row n� 1, again without cancelling; repeat the process.

The ith step is:

Mi =

2
66664

��b0 �b1 ::: �bn�i+1 �bn�i+2 ::: �bn
�b0 B�b1 ::: �bn�i+1 �bn�i+2 ::: �bn

...
...

...
...

...
...

�b0��+b0 �b1+b1 ::: B�bn�i+1+bn�i+1 �bn�i+2+bn�i+2 ::: �bn+bn
�� 0 ::: 0 B ::: 0
...

...
...

...
...

...
�� 0 ::: 0 0 ::: B

3
77775 ;
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where the complicated row is row n� i+1. Remember that the matrix is indexed

from 0 to n.

M 0
i
=

2
66666666666664

� � b0 �b1 : : : �bn�i+1 �bn�i+2 : : : �bn

�b0 B � b1 : : : �bn�i+1 �bn�i+2 : : : �bn
...

...
. . .

...
...

...

�� 0 : : : B 0 : : : 0

�� 0 : : : 0 B : : : 0
...

...
...

...
. . .

...

�� 0 : : : 0 0 : : : B

3
77777777777775

The last matrix is

M 0
n
=

2
66666666664

� � b0 �b1 �b2 ::: �bn

�� B 0 ::: 0

: : : ::: :

: : : ::: :

: : : ::: :

�� 0 0 ::: B

3
77777777775
:

The coe�cient of � in the determinant of this matrix is

S = Bn � b1B
n�1 �Bb2B

n�2 �B2b3B
n�3 � :::�Bn�1bn;

where we write each term with its factors in the same order in which their columns

appeared in the �nal matrix,M 0
n
.

2.1 The Sets

We de�ne a sequence of signed sets A0; A
0
0; A1; A

0
1; : : : ; An+1; A

0
n+1. A0 is the

set of trees on vertices 0; : : : ; n, where each tree comes with a positive sign.

The sets A0
0; A1; A

0
1; : : : ; A

0
n
are matrix sets as described in x1.4: For 1 � i � n,

Ai is the matrix set of arrays corresponding to Mi and for 0 � i � n, A0
i
is the
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matrix set of arrays fromM 0
i
. For example, when n = 2, two of the elements of A2

are:
h
�

B0

B1

i
and

h
�b1

��
B2

i
. (These arrays with one element in each row and

column are understood to come with the sign they would have in the determinant.)

An+1 is the set of signed monomials (written as ordered n-tuples) occurring in

S, the coe�cient of � in the determinant of M 0
n
:

An+1 = Bn �
�
fb1g �B

n�1
�
�
�
B � fb2g �B

n�2
�
� : : :�

�
Bn�1 � fbng

�
:

Here, we think of B as B = fB0; B1; : : : ; Bng and B
k as the k-fold direct product

of B with itself. We write the factors in the left-to-right order of the columns

in which the entries appeared. The �nal set, A0
n+1, is the set of monomials (all

positive now) remaining when Bj is set equal to bj and arithmetic is done on S:

A0
n+1 = fb0g �B

n�1. Ignoring the initial b0, this is isomorphic to the set of codes

(the codes are simply the subscripts of these monomials taken in order).

2.2 The involutions

We de�ne a sequence of sign-reversing involutions �0; �
0
0; �1; �

0
1; : : : ; �

0
n
; �n+1 on

di�erences of two consecutive sets. In this set-up, when we write a negative sign

in front of an array it implies that the matrix comes from the subtracted set.

De�ning �0

�0 : A0 � A
0
0 ! A0 � A

0
0 is de�ned as follows. If t is a tree, then �0(t) is the

negative of the array given by the bijective proof of the Matrix Tree Theorem: in

the ith diagonal, the Bj term is taken if succ(i) = j. If t is an array in the negative

matrix set, we look at the graph formed by the edges i ! j for all i; j where an

indeterminate with the subscript j is in the ith row of t. If this is a tree, then it

is �0(t). If not, then �0(t) can be found by toggling the diagonality of the cycle

containing the greatest vertex in a cycle in this graph (see x1.4). In the case where

a tree matches an array, this is clearly a sign-reversing involution. For the case of
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the pairings of two elements of A0
0, since we only moved one cycle on or o� the

diagonal, and we know how to �nd it, it is clear that repeating the process will get

us back where we started. �0 is sign-reversing, as noted in x1.4

De�ning �0
i
for 0 � i � n � 1

Recall that for 0 � i � n � 1, Mi+1 is obtained from M 0
i
by row subtraction

without cancellation. �0
i
: A0

i
�Ai+1! A0

i
�Ai+1 is de�ned as follows. If a 2 �Ai+1

and the entry in row n� i+1 is �� or �bj for some j, then �0
i
(�a) = �a0 2 �Ai+1

where a0 is obtained from a by interchanging and negating rows 0 and n � i + 1.

(Remember that the matrices are indexed from 0 to n.) Otherwise, �0
i
(a) = �a

(in �Ai+1 if a 2 Ai, and vice versa).

An example may help to clarify the method. In the n = 2 case, A0
0 and A1 are

the sets of arrays in which � occurs in M 0
0 and M1 respectively:

M 0
0 =

2
664
� � b0 �b1 �b2

�b0 B � b1 �b2

�b0 �b1 B � b2

3
775 and

M1 =

2
664

� � b0 �b1 �b2

�b0 B � b1 �b2

��+ b0 � b0 b1 � b1 b2 +B � b2

3
775 :

In the easier situation, where the array does not change, we have:

�00

�h
�

B0

B1

i�
= �

h
�

B0

B1

i
2 �A1:

Here, we started with an element of A0
0 and ended with an element of �A1; the

two arrays look identical other than the negative sign outside. Meanwhile, in the

more confusing case:

�00

�
�
h
�

B0

b2

i�
= �

h
�b2

B0

��

i
:
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Note that in this example, both arrays appear in the set �A1 but do not exist in

A0
0, and the actual sign of �00(�a) is di�erent from that of �a. We have switched

the rows in which two of the entries appeared, changing their signs but leaving

them in their original columns. This is always the procedure for �0
i
. Another

possibility is:

�00

�
�
h
�

B0

�b2

i�
=
h
�

B0

�b2

i
2 A0

0:

In this example, we started with an element of �A1 and �
0
0 returned an element of

A0
0; �

0
0 is an involution because if we apply it twice we get back the same element

we started with. The involution is sign-reversing because interchanging two rows

of a matrix changes the sign of the determinant and changing the signs of two rows

has no e�ect.

De�ning �i for 1 � i � n

Since M 0
i
is obtained from Mi by arithmetic within entries of the matrix, the

rest of the involutions for 1 � i � n are of the form �i : Ai � A
0
i
! Ai � A

0
i
. If

a 2 Ai and the entry in the (n � i+ 1)th row is �bj, then �i(a) = a0 2 Ai where

a0 is obtained from a by changing the sign of the entry in the (n � i + 1)th row.

Otherwise, �i(a) = �a 2 A
0
i
. If �a 2 �A0

i
, then �i(�a) = a 2 Ai. Returning to

the n = 2 example,

M 0
1 =

2
664
�� b0 �b1 �b2

�b0 B � b1 �b2

�� 0 B

3
775 :

So we have

�1

�h
�

B0

�b2

i�
=
h
�

B0

+b2

i
2 A1;

and

�1

�
�
h

�b1
�b2

��

i�
=
h

�b1
�b2

��

i
2 A1:
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Note that in the �rst of these two examples, �1(a) and a had opposite signs but were

both elements of A1, whereas in the second example, �a 2 �A0
1 and �1(�a) 2 A1.

This is clearly an involution, since there is only one row of M 0
i
in which entries

appear twice with opposite signs.

De�ning �0
n
and �n+1

The last two involutions are a little bit di�erent. �0
n
: A0

n
�An+1 ! A0

n
�An+1

takes an array in the matrix set A0
n
and matches it with the product of its non-�

entries in the order of their columns (with the sign the determinant would assign

this term), and it takes signed monomials to the location of the corresponding

array. There is always a � in the zeroth column.

For example, in

M 0
2 =

2
664
�� b0 �b1 �b2

�� B 0

�� 0 B

3
775 ;

we have

�02

�h
�b1

��
B0

i�
= �b1B0;

�02(�B0b2) =
h

�b2
B0

��

i
;

and

�02

�h
�

B0

B0

i�
= B0B0:

Again, this is an involution because it matches elements of A0
n
(the set of arrays)

with monomials, in perfect pairs.

The �nal involution, �n+1 : An+1 � A
0
n+1 ! An+1 � A

0
n+1, takes any positive

element of An+1 and matches it to another monomial, obtained according to the
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following formula:

�n+1

 
nY

k=1

Bjk

!
=

8>>>><
>>>>:
�b0

nY
k=2

Bjk
2 �A0

n+1 if j1 = 0;

�Bjj1

 
j1�1Y
k=2

Bjk

!
bj1

 
nY

k=j1+1

Bjk

!
2 An+1 otherwise.

�n+1 applied to any element of �A0
n+1 gives the same monomial, only with the

initial �b0 changed to a positive B0, in An+1. If we start with a negative element

of An+1, it must have exactly one bj in the jth position for some j. When we apply

�n+1, we make this bj upper-case and switch it with the indeterminate in the �rst

position, and change the sign. This is clearly a sign-reversing involution.

The ugliness of the formula belies the simplicity of the process. A few examples

with n = 6 should help.

�7 (B3B4B6B0B2B0) = �B6B4b3B0B2B0 2 A7:

All we have done is toggle the capitalization of B3 (in the �rst position of the

product) and switch this new lower-case entry with the element in the third (its

subscript) position (which is B6). The easiest possible case is:

�7 (B0B1B6B2B4B2) = �b0B1B6B2B4B2 2 �A
0
7:

More often some switching is involved, as in the �rst case and the next one:

�7 (�B4B3B0B3b5B1) = B5B3B0B3B4B1 2 A7:

(Remember, if there is a lower-case bj in the product, we switch it with the �rst

element of the product.)

These involutions are a key ingredient in the creation of the Happy Code.

2.3 Garsia and Milne's Involution Principle

Garsia and Milne [5] found an extremely useful method while investigating

bijective proofs for the Rogers-Ramanujan identities.
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De�nition 21 A pseudo-sign-reversing involution is an involution on a signed

set, with the property that any point that is not �xed is sent to a point with the

opposite sign.

Lemma 1 (Scholium: The Involution Principle [5]) Let A be a �nite signed

set, A = A+ � A�, with pseudo-sign-reversing involutions � and  whose �xed-

point sets are F (�) and F ( ) respectively. Then there is a (�xed-point-free) sign-

reversing involution  on the set F (�)�F ( ). Furthermore,  can be constructed

using the following algorithm:

begin

if �(x)= x then

y  x

repeat

z   (y)
y  �(z)

until �(z) = z or  (y) = y

if �(z) = z then

(x) z

else

(x) y

else if  (x) = x then

y  x

repeat

z  �(y)
y   (z)

until  (z) = z or �(y) = y

if  (z) = z then

(x) z

else

(x) y

else

fx is not a �xed point of � or  g

end.1

This Lemma is extremely important because it not only establishes the existence

of the involution  but actually shows how to construct it.

1Pseudo-code quoted from [11], pages 141-142
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Lemma 2 (The Bread Lemma) Given two sign-reversing involutions, � : A�

B ! A�B and  : B�C ! B�C, there is a sign-reversing involution on A�C.

Proof . Let �IB represent the negative identity map on B�B, extended to be

the identity on A�C.

�IB (x) =

8<
:
�x if x 2 �B +B;

x if x 2 A� C.

Let �+  : A�B +B � C ! A�B +B � C be de�ned as follows:

(�+  ) (x) =

8<
:� (x) if x 2 A�B

 (x) if x 2 B �C
:

Then both �IB and (�+  ) are pseudo-sign-reversing involutions, and F (�IB) =

A � C and F (� +  ) = ;. The algorithm of the Involution Principle provides a

sign-reversing involution on F (�+  )� F (�IB) = A� C � ; = A� C. ��

We call it the Bread Lemma because it can be visualized as a process to remove

all of the insides from a B sandwich, leaving the diner with only a couple of slices

of bread (the sets A and C).

Lemma 3 Given any sequence of signed sets S0; S1; : : : ; Sk+1, where S0 and Sk+1

contain only positive elements, and sign-reversing involutions �0; : : : ; �k where �i

acts on Si � Si+1, there is a constructible bijection between S0 and Sk+1.

Proof . By repeated applications of The Bread Lemma (Lemma 2.3), we can

\eliminate" all of the in-between sets as follows. Let A = S0, B = S1, C = S2,

� = �0, and  = �1. The Bread Lemma constructs a sign-reversing involution on

S0�S2, and this involution still satis�es the hypotheses of the Bread Lemma. Now

letB = S2, C = S3, etc. We keep sandwiching in until we arrive atA = S0, B = Sk,

and C = Sk+1, where � is the involution achieved by so many applications of the

Bread Lemma and  is �k+1. One more application, and we have a sign-reversing
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involution on S0 � Sk+1. However, (S0 � Sk+1)
+
= S0 and (S0 � Sk+1)

�
= �Sk+1

since these two sets contained only positive elements. Hence the only way for the

involution to be sign-reversing is for each element of S0 to be mapped to an element

of Sk+1. Thus, we have found a bijection between S0 and Sk+1. Note that we have

not simply proven the existence of a bijection, but actually provided an algorithm

for constructing it. ��

Theorem 2 Given the sets A0; A
0
0; A1; : : : ; A

0
n+1 and the sign-reversing involutions

�0; �
0
0; : : : ; �n; �

0
n
; �n+1 de�ned above, there is a constructible bijection between A0

(the set of trees) and A0
n+1 (the set of codes).

Proof . The sets A0; : : : ; A
0
n+1 and the involutions �0; : : : ; �n+1 satisfy the hy-

potheses of Lemma 3. Thus we can construct the bijection between the set of trees

and the set of codes. ��

2.4 An example

Consider the case n = 2. We will apply the theorem to �nd the code that

corresponds to the tree 1! 2! 0 2 A0.

First we apply �0 to get an element of �A0
0:

�0 (1! 2! 0) = �
h
�

B2

B0

i
2 �A0

0

Next we apply �IA0

0
:

�IA0

0

�
�
h
�

B2

B0

i�
=
h
�

B2

B0

i
2 A0

0

We alternate between �s and �Is. Each application of a �I merely changes the

sign of the element (and of the subset it lies in):

�IA1
� �00

�
�
h
�

B2

B0

i�
=
h
�

B2

B0

i
2 A1
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�IA0

1
� �1

�h
�

B2

B0

i�
=
h
�

B2

B0

i
2 A0

1

�IA2
� �01

�h
�

B2

B0

i�
=
h
�

B2

B0

i
2 A2

�IA0

2
� �2

�h
�

B2

B0

i�
=
h
�

B2

B0

i
2 A0

2:

Since n = 2, we are in the last matrix set.

�IA3
� �02

�h
�

B2

B0

i�
= B2B0 2 A3

This is the exciting part!

�3 (B2B0) = �B0b2 2 A3

�02 � �IA3
(�B0b2) =

h
�b2

B0

��

i
2 A0

2

Now there is nothing to stop us from passing through several sets in a row on our

way back up the sequence of sets via the following involutions:

�2 � �IA0

2

�h
�b2

B0

��

i�
=
h

�b2
B0

��

i
2 A2

�01 � �IA2

�h
�b2

B0

��

i�
=
h

�b2
B0

��

i
2 A0

1

�1 � �IA0

1

�h
�b2

B0

��

i�
=
h

�b2
B0

��

i
2 A1

At this point we apply �00 � �IA1
. �IA1

takes us to the set �A1, and in this case

an application of �00 maps to another element of �A1:

�00 � �IA1

�h
�b2

B0

��

i�
= �

h
�

B0

b2

i
2 �A1
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�IA1

�
�
h
�

B0

b2

i�
=
h
�

B0

b2

i
2 A1

�1

�h
�

B0

b2

i�
=
h
�

B0

�b2

i
2 A1

�IA0

0
� �00 � �IA1

�h
�

B0

�b2

i�
= �

h
�

B0

�b2

i
2 �A0

0

At this point it is the Matrix Tree Theorem that comes to the rescue, in the form

of �0:

�0

�
�
h
�

B0

�b2

i�
= �

h
�

B0

B2

i
2 �A0

0

The involutions now take us directly down the sequence of matrices to the last

one.

�IA0

1
� �1 � �IA1

� �00 � �IA0

0

�
�
h
�

B0

B2

i�
=
h
�

B0

B2

i
2 A0

1

�IA0

2
� �2 � �IA2

� �01

�h
�

B0

B2

i�
=
h
�

B0

B2

i
2 A0

2

Coming down the home stretch:

�IA3
� �02

�h
�

B0

B2

i�
= B0B2 2 A3

And �nally:

�3 (B0B2) = �b0B2 2 �A
0
3:

Thus, the Happy Code for the tree 1! 2! 0 is B2.

To �nd the tree for a code, we can easily follow the involutions through back-

wards, undoing the whole process. In this sense, the Happy Code is more natural

(hence \happier") than the Pr�ufer Code.

Computationally, �nding the Happy Code for a tree is a slow process. However,

later we will see a method for calculating the Happy Code that does not resort to

matrices but works directly with the tree.



Chapter 3

The Blob Code

Another code results from a di�erent sequence of sets and involutions, but still

using the Involution Principle and the Bread Lemma. We begin with the n � n

submatrix from the Matrix Tree Theorem (obtained by crossing out the zeroth row

and column):

C 0
0 =

2
66666666664

B � b1 �b2 : : : �bn

�b1 B � b2 : : : �bn

: : : : : :

: : : : : :

: : : : : :

�b1 �b2 : : : B � bn

3
77777777775

The Blob Code is related to the process of alternately performing row operations

and column operations on adjacent rows and columns as follows. The �rst step is

31
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to subtract row n� 1 from row n (without cancellation).

R1 =

2
66666666666664

B � b1 �b2 : : : �bn�1 �bn

�b1 B � b2 : : : �bn�1 �bn

: : : : : : :

: : : : : : :

: : : : : : :

�b1 �b2 : : : B � bn�1 �bn

�b1 + b1 �b2 + b2 : : : �bn�1 �B + bn�1 B � bn + bn

3
77777777777775

Now we perform arithmetic within entries, but only in row n:

R0
1 =

2
66666666666664

B � b1 �b2 : : : �bn�1 �bn

�b1 B � b2 : : : �bn�1 �bn

: : : : : : :

: : : : : : :

: : : : : : :

�b1 �b2 : : : B � bn�1 �bn

0 0 : : : �B B

3
77777777777775

Then we add column n to column n � 1.

C1 =

2
66666666666664

B � b1 �b2 : : : �bn�1 � bn �bn

�b1 B � b2 : : : �bn�1 � bn �bn

: : : : : : :

: : : : : : :

: : : : : : :

�b1 �b2 : : : B � bn�1 � bn �bn

0 0 : : : �B +B B

3
77777777777775
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And once again, perform arithmetic within entries in row n (not column n� 1):

C 0
1 =

2
66666666666664

B � b1 �b2 : : : �bn�1 � bn �bn

�b1 B � b2 : : : �bn�1 � bn �bn

: : : : : : :

: : : : : : :

: : : : : : :

�b1 �b2 : : : B � bn�1 � bn �bn

0 0 : : : 0 B

3
77777777777775

All of that was the �rst step. We work our way up the matrix this way: at the

ith step we �rst subtract row n� i from row n� i+ 1, then add column n� i+ 1

to column n � i, cancelling only within row n � i + 1, until the matrix consists

of B on the diagonals and 0 elsewhere, except in the �rst row. At the end of the

ith step the (n � i)th diagonal entry consists of B �
P
bj where the sum is over

n�i � j � n. After the last column operation, we set Bj = bj so that the diagonal

entry in row 1 consists only of b0. At the end of the whole process, the �rst row

consists of b0 in its �rst entry and a bunch of garbage in the other entries, but the

rest of the matrix is just B on the diagonal. The last 2 matrices are:

Cn�1 =

2
6666666666666664

B � b1 �

nX
k=2

bk �

nX
k=2

bk

nX
k=3

bk : : : �bn�1 � bn �bn

�B +B B 0 : : : 0 0

: : : : : : : :

: : : : : : : :

: : : : : : : :

0 0 : : : : B 0

0 0 0 : : : 0 B

3
7777777777777775
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and

C 0
n�1 =

2
66666666666664

b0 �b2 � b3 � � � � � bn : : : �bn�1 � bn �bn

0
P

n

j=0 bj : : : 0 0

: : : : : : :

: : : : : : :

: : : : : : :

0 0 : : :
P

n

j=0 bj 0

0 0 : : : 0
P

n

j=0 bj

3
77777777777775
:

This matrix clearly has determinant equal to b0B
n�1.

3.1 Orlin's ideas

In [8], Orlin introduced the idea of identifying two vertices of a graph. We

explain how this notion is used with the matrices in the construction of the Blob

Code. Assume we have a weighted directed graph on vertices 0 through n. Loops

are allowed. We assume there are no multiple edges, because multiple edges can

be subsumed into the weights. The weight of the edge from i to j is aij.

De�nition 22 In a directed graph D, two vertices i and j are identi�able when

aik = ajk for all k.

Note that this de�nition includes k = i and k = j; so if there is an edge from i to

j then there needs to be a loop on j.

Identi�ability is an equivalence relation, so there is some sense in which we can

think of two identi�able vertices as being redundant (their outgoing edges have the

same heads).

De�nition 23 If we \identify" two identi�able vertices i and j to a generalized

vertex, called blob, and eliminate one set of the duplicate edges, we end up with

a new digraph in which there are aik(= ajk) edges blob ! k for all k 6= i; j, and

there are aki + akj edges k ! blob. There are also aij + aji loops on the blob.
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We take full blame for the naming of the blob. We di�er from Orlin in our

visualization of this process. He considered this \blob" to be a new vertex; we

think of it as containing the original two vertices being identi�ed. Each incoming

edge actually points not at the blob as a whole but rather at its original terminal

vertex within the blob.

Here, we set our edge weights to W (i ! j) = bj for all edges. and look at an

example:

0

3 1

2

@
@R

�
�	

-
�
�	

?

@
@R
 -

Vertices 1 and 3 are identi�able: each has exactly one edge to 0 and one edge to 1.

If we identify the two, we obtain the following graph (with weights w(2! 0) = b0,

w(2! 1) = b1, w(2! 3) = b3, w(blob! 0) = b0, and w(blob! 1) = b1):

0

�



�
	

2

3 1
�
�	

A
AU

?

Q
Q
QQs -

In this graph, 2 and blob are not identi�able because 2 has an edge to 3, while

there is no loop blob! 3.

In the complete digraph with loops, all vertices are identi�able. This was

why we altered the matrix to allow for loops. Orlin used this idea to manipulate

formulas to get the formula (n + 1)n�1 for the number of trees. We examine the

relationship between this idea and the matrix method.

For the moment we illustrate the process with n = 3. We begin with the

complete directed graph. The 4 � 4 matrix corresponding to it, where the edges
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are weighted by indeterminates indexed by the terminal vertex, is

D̂ � Â = �0 =

2
666664
B � b0 �b1 �b2 �b3

�b0 B � b1 �b2 �b3

�b0 �b1 B � b2 �b3

�b0 �b1 �b2 B � b3

3
777775 :

Once we identify vertices 2 and 3, the graph looks like this (omitting edges whose

initial vertex is 0, since they never appear in a tree and we will not be identifying

vertex 0 with any of the others).

0

3,!
1 -

2,!
�




�

	
@@R ?

HHY
���
-

The corresponding matrix is

�1 =

2
664
B � b0 �b1 �b2 � b3

�b0 B � b1 �b2 � b3

�b0 �b1 B � b2 � b3

3
775 :

The proper way to think of this is that there are two relevant rows (the zeroth row,

representing edges from 0, is not relevant); the \oneth" row represents edges out

of 1 and the second represents edges out of blob. The zeroth column represents

edges into 0; the \oneth" column (not including diagonal entries) represents edges

into 1, and the second represents edges into blob. An edge 1 ! blob can be

either 1 ! 2 or 1! 3. If we were to cancel terms in the last row, we would have

only b0 + b1 in the diagonal entry. The positive and negative copies of b2 and b3

represent the loops blob! 2 and blob! 3 respectively.

Once we have identi�ed 1 with blob (which we can do because both have edges

to 0, 1, 2, and 3), the graph is (with undrawn edges from 0):

0

3,! 2
x

1 -
�



�
	

?
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The matrix corresponding to this is

�2 =

"
B � b0 �b1 � b2 � b3

�b0 B � b1 � b2 � b3

#
=

"
B � b0 �b1 � b2 � b3

�b0 b0

#
:

We will be crossing out the zeroth row and column. Thus, only one entry appears

in the part of the matrix in whose determinant we are interested. This is true

because now there is only one vertex besides 0 and it only has one non-loop edge.

The determinants of �0;�1; and �2 are related as follows: b0B
2 = det(�0) =

det(�1)�B = det(�2)�B
2.

3.2 The sets

Much as we did with the Happy Code, we use the matrices in the de�nition of

a sequence of signed sets, but now we insert some of Orlin's ideas as well. The sets

are G0; G
0
0; S1; S

0
1; T1; T

0
1; G1; : : : ; T

0
n�1; Gn�1; G

0
n�1; Sn.

In this sequence, the set G0 is the set of trees, and G
0
0 is the matrix set of arrays

de�ned by C 0
0. There are more matrices than we had for the Happy Code, and

extra sets in between. For 1 � i � n�1, Gi is the set of ordered pairs (�; ) where

� is a spanning tree (rooted at 0) on a directed graph Di (described below) and 

is an ordered i-tuple of bj's. Di is de�ned to be the complete digraph with n � i

vertices, where vertex n� i is actually blob which contains n� i; n� i+ 1; : : : ; n.

The labels in blob are terminal vertices to edges, but they all share the same

outgoing edges; in any tree, blob has only one outgoing edge.

For 1 � i � n, Si and S0
i
are the sets of arrays from Ri and R

0
i
respectively,

and Ti denotes the set of arrays from Ci. Finally, we use both T
0
i
and G0

i
to denote

the set of arrays from C 0
i
, for 0 � i � n � 1. Arrays are signed, as they were in

the Happy Code. The �nal set is Sn = fb0g � B
n�1 where, in the set notation,

B is understood to stand for the set B = fb0; : : : ; bng and Bn�1 stands for the

(n� 1)-fold direct product B �B � : : :�B.

As an example we list the sets for the case n = 3. Matrices are thought of as
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sets of arrays. (In the graphs, edges with initial vertex 0 have been omitted from

the pictures, since they never appear in a spanning tree and the zeroth row of the

matrix has already been ignored.)

G0=the set of rooted spanning trees of

0

3,! 1 -

2,!

@
@R

�
�	?

�
�� @

@R�
�	 @

@I
� -

G0
0 $ C 0

0 =

2
664
B � b1 �b2 �b3

�b1 B � b2 �b3

�b1 �b2 B � b3

3
775

S1$ R1 =

2
664
B � b1 �b2 �b3

�b1 B � b2 �b3

�b1 + b1 �b2 �B + b2 B � b3 + b3

3
775

S01 $ R0
1 =

2
664
B � b1 �b2 �b3

�b1 B � b2 �b3

0 �B B

3
775

T1$ C1 =

2
664
B � b1 �b2 � b3 �b3

�b1 B � b2 � b3 �b3

0 �B +B B

3
775

T 0
1$ C 0

1 =

2
664
B � b1 �b2 � b3 �b3

�b1 B � b2 � b3 �b3

0 0 B

3
775
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G1 = the set of rooted spanning trees of

0

3,!
1 -

2,!
�




�

	
@@R ?

HHY
���
-

�B

G0
1 $ C 0

1 =

2
664
B � b1 �b2 � b3 �b3

�b1 B � b2 � b3 �b3

0 0 B

3
775

S2$ R2 =

2
664

B � b1 �b2 � b3 �b3

�b1 �B + b1 B � b2 � b3 + b2 + b3 �b3 + b3

0 0 B

3
775

S02 $ R0
2 =

2
664
B � b1 �b2 � b3 �b3

�B B 0

0 0 B

3
775

T2$ C2 =

2
664
B � b1 � b2 � b3 �b2 � b3 �b3

�B +B B 0

0 0 B

3
775

T 0
2$ C 0

2 =

2
66666664

b0 �b2 � b3 �b3

0

3X
j=0

bj 0

0 0

3X
j=0

bj

3
77777775
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G2 = the set of rooted spanning trees of

0

3,! 2
x

1 -
�



�
	

?
�B2

G0
2 $ C 0

2 =

2
66666664

b0 �b2 � b3 �b3

0

3X
j=0

bj 0

0 0

3X
j=0

bj

3
77777775

The �nal set is S3 = fb0g�B�B, where B = fb0; b1; : : : ; bng by abuse of notation.

3.3 The involutions

Some of the involutions are de�ned similarly to the involutions we used for the

Happy Code, but there are many more of them.

De�ning �00

�00 : G0 � G
0
0 ! G0 � G

0
0 maps a tree to an array from �G0

0 by taking the bj

in the ith diagonal entry for each edge i! j. The remaining elements of �C 0
0 are

matched in pairs (by toggling the diagonality of the cycle with the largest element)

according to the bijective proof of the Matrix Tree Theorem, just as they were for

the Happy Code.

De�ning �i for 1 � i � n� 1

For 1 � i � n � 1, �i : G
0
i�1 � Si ! G0

i�1 � Si maps corresponding arrays in

G0
i�1 and �Si to each other, and then takes the extra elements of �Si and matches

them up according to the row operation that took C 0
i�1 to Ri. If �a 2 �Si and

the entry in row n � i + 1 is +bj or �Bj, then �i(�a) = �a
0 2 �Si where a

0 is

obtained from a by interchanging and negating rows n�i and n�i+1. Otherwise,
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�i(a) = �a (in G
0
i�1 if a 2 �Si and vice versa). Consider what happens if we begin

with an element of G0
1:

�2

�h
B0

B1

B2

i�
= �

h
B0

B1

B2

i
2 �S2:

If we start with an element of G0
1, there is always a corresponding element of �S2:

the same array but with a negative sign outside it. We could also start with an

element of �S2:

�2

�
�
h
B0

B0

B1

i�
=
h
B0

B0

B1

i
2 G0

1:

In that example, there was a corresponding element of G0
1. Sometimes, there isn't:

�2

�
�
h

�b2
�B3

B0

i�
= �

h
B3

+b2
B0

i
2 �S2:

Here we switched the rows (and signs!) of the entries in the �rst and second rows

without changing the columns of these entries. Note that the resulting element of

�S2 does not have a corresponding element in G0
1 either (because the b2 on that

diagonal is not the one from B). It is clear that �i is a sign-reversing involution.

De�ning �0
i
for 1 � i � n� 1

�0
i
: Si�S

0
i
! Si�S

0
i
, for 1 � i � n� 1, is de�ned as follows: If a 2 Si and the

entry in row n� i+1 is �bj, then �
0
i
(a) = a0 2 Si where a

0 is obtained by changing

the sign of the entry in row n� i+ 1 of a and all other entries remain unchanged.

Otherwise, �0
i
(a) = �a (in �S0

i
if a 2 Si and vice versa). For example, if n = 3

and we start with an element of S1,

�01

�h
�b3

B0

�b1

i�
=
h

�b3
B0

+b1

i
2 S1:

Other elements of S1 get mapped to elements of �S01 (and all elements of �S01 get

mapped to elements of S1):

�01

�h
B2

B0

B0

i�
= �

h
B2

B0

B0

i
2 �S01

and

�01

�h
B2

�b3
�B0

i�
= �

h
B2

�b3
�B0

i
2 �S01:
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De�ning �i for 1 � i � n� 1

For 1 � i � n� 1, �i : S
0
i
�Ti! S0

i
�Ti works similarly to �i. The di�erence is

that now the column operation is the key. If we begin with an element of S01, we

get an element of �T1:

�1

�h
B2

B0

B2

i�
= �

h
B2

B0

B2

i
2 �T1:

In fact, �i applied to an element of S0
i
always gives the corresponding element of

Ti: the same array, but with a negative sign. The reverse sometimes happens if

we apply �i to an element of Ti:

�1

�
�
h
B0

B3

B1

i�
=
h
B0

B3

B1

i
2 S01:

However, if there is no corresponding element in S0
i
, we switch the columns of the

entries in columns n� i+1 and n� i (but not the signs this time, since the column

operations were addition). For example,

�1

�
�
h

�b3
�b1

B0

i�
= �

h
�b3

�b1
B0

i
2 �T1:

Here we switched the entries in columns 2 and 3, leaving them in their original

rows. In general, we have: If a 2 �Ti and the entry in column n � i is Bj in row

n � i+ 1 or �bj where j � n � i+ 1, then �i(a) = a0 2 �Ti where a
0 is obtained

from a by interchanging columns n� i and n� i+ 1. For all other a, �i(a) = �a

(in Si if a 2 �Ti and vice versa).

De�ning �0
i
for 1 � i � n� 2

�0
i
: Ti � T

0
i
! Ti � T

0
i
works similarly to �0

i
for 1 � i � n � 1. If a 2 Ti and

the entry in row n � i + 1 is in column n � i, then �0
i
(a) = a0 2 Ti where a

0 is

obtained from a by changing the sign of the entry in the (n� i+1; n� i) position.

Otherwise, �i(a) = �a (in Ti if a 2 �T
0
i
and vice versa). For example, starting

with an element of T1:

�01

�h
B0

B2

B2

i�
= �

h
B0

B2

B2

i
2 �T 0

1:
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If we start with an element of T1, there are two possibilities: either there is a

corresponding array in T 0
1 as above, or else the array cancels via arithmetic within

an entry, as in the next example:

�01

�h
�b3

�b1
B0

i�
=
h

�b3
�b1

�B0

i
2 T1:

De�ning �0
n�1

�0
n�1 : Tn�1 � T

0
n�1 ! Tn�1 � T

0
n�1 is essentially the same as the previous �0

i
s,

except that now we set Bj = bj and cancel in row 1. If a 2 Tn�1 and the entry in

column 1 is anything other than B0 in the upper-left corner of the matrix, then

�0
n�1(a) = a0 2 Tn�1 where a

0 is obtained from a by changing the sign of the entry

in column 1 and making all Bj lower-case. For all other a, �
0
n�1(a) = �a

0 2 T 0
n�1

obtained by leaving all entries the same but making Bj lower-case.

�02

�h
B3

B0

B2

i�
=
h
�b3

b0

b2

i
2 T2;

�02

�h
�b2

B0

B0

i�
=
h
b2

b0

b0

i
2 T2; and

�02

�h
�b2

�B0

B0

i�
=
h

�b2
b0

b0

i
2 T2:

De�ning �i and �0
i
for 1 � i � n� 1

�i : T
0
i
� Gi ! T 0

i
� Gi reads the entries of the matrix and translates them

into the digraph. The upper-left (n� i)� (n� i) corner represents (by the Matrix

Tree Theorem) the spanning trees of Di (in fact, these submatrices are obtained

from the matrices �i from the example in x3.1 by crossing out the zeroth row and

column). When �i is applied to an element x in T 0
i
, one of two things happens.

Case 1: if edges are drawn from k to j for each bj appearing in row k � n � i in

x (remembering that it is okay for j to be inside blob), and the resulting graph

is a tree, then �i(x) is the pair whose �rst element is that tree, and whose second

element is the i-tuple found by reading down the diagonal starting at row n� i+1.
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Case 2: if those edges do not form a tree, then there is at least one cycle, and by

moving the cycle with the largest element onto or o� of the diagonal (according

to where it already was), we �nd the element of T 0
i
that is �i(x). (Actually, there

can only be one cycle, so we don't have to worry about which cycle to move). It

is clear that for elements x 2 T 0
i
such that �i(x) 2 T 0

i
, �i acts as an involution.

De�ne �i((�; )) to be the element of T 0
i
found by putting bj in the diagonal entry

in row k whenever there is an edge in the tree k ! j, and �lling in the rest of the

diagonal entries from left to right by taking them from the code. Then it is clear

that �i acts as an involution in the rest of the cases too.

If �i(x) 2 �Gi (in other words, it is a �(�; ) pair), then step i of the overall

procedure is �nished. For example,

�1

�h
B2

B0

B3

i�
= �

 
1 -

�
�
�
�2

3
- 0; (b3)

!
2 �G2;

which signi�es that step 1 is �nished. On the other hand,

�1

�h
B3

B1

B0

i�
=
h

�b3
�b1

B0

i
;

indicating that we will have to apply several more involutions before step 1 is done.

�0
i
: Gi � G

0
i
! Gi � G

0
i
is essentially the negative of �i, since the sets T

0
i
and

G0
i
are identical. Moving from Gi into G

0
i
is the beginning of the (i+ 1)th step.

De�ning �n

The �nal involution, �n : G0
n�1�Sn ! G0

n�1�Sn matches arrays from C 0
n�1 to

negative monomials that consist of the entries in order from left to right, similarly

to �0
n
in the Happy Code.

�n

0
@
2
4 b0

bk2

...
bkn

3
5
1
A = b0bk2 : : : bkn :

For example,

�3

�h
b0

b3

b0

i�
= �b0b3b0;
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�3

�h
b0

b2

b2

i�
= �b0b

2
2; and

�3 (�b0b1b3) =
h
b0

b1

b3

i
:

In fact, since all elements of G0
n�1 are positive, and so are all elements of Sn, �n is

a simple bijection between the elements of G0
n�1 and the elements of �Sn.

3.4 How to Find the Blob Code

We use these involutions the same way we did for the Happy Code.

Theorem 3 Given the sets G0; G
0
0; S1; S

0
1; T1; T

0
1; G1; : : : ; G

0
n�1; Sn and the sign-

reversing involutions �00; �1; �
0
1; �1; �

0
1; �1; �

0
1; : : : ; �

0
n�1; �n�1; �

0
n�1; �n, there is a bi-

jection between G0 (the set of trees) and Sn (the set of codes).

Proof . The sets and involutions satisfy the conditions of Lemma 3. Thus we

can construct the bijection between the set of trees and the set of codes. ��

3.4.1 An example

To clarify the method, we use the matrix method to construct the Blob Code

for the tree 2! 1! 3! 0 2 G0. It will help to remember that elements in each

signed set can only have one of the involutions of types �i; �
0
i
; �i; �

0
i
; �i; �

0
i
applied

to them, and we always alternate between negative identity maps and our de�ned

involutions (�, �, and �, with indices and with or without primes).

Involution Acts on

�i G0
i�1 � Si

�0
i

Si � S
0
i

�i S0
i
� Ti

�0
i

Ti � T
0
i

�i T 0
i
�Gi

�0
i

Gi �G
0
i
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This particular example is a sort of \worst case scenario" for a small graph,

but for larger n such a long process would be more likely. Coding trees with no

inversions is much easier, as is coding any tree that satis�es the condition that for

every i whose path to 0 goes through some j > i, it also holds that succ(i) > i.

Step 1

First we apply �00 to get an element of �G0
0:

�00 (2! 1! 3! 0) = �
h
B3

B1

B0

i
2 �G0

0:

Next we apply IG0

0
:

�IG0

0

�
�
h
B3

B1

B0

i�
=
h
B3

B1

B0

i
2 G0

0

As in the example for the Happy Code, we alternate between the involutions we

de�ned, and the negative identity maps.

�IS1 � �1

�h
B3

B1

B0

i�
=
h
B3

B1

B0

i
2 S1

�IS01 � �
0
1

�h
B3

B1

B0

i�
=
h
B3

B1

B0

i
2 S01

�IT1 � �1

�h
B3

B1

B0

i�
=
h
B3

B1

B0

i
2 T1

�IT 0

1
� �01

�h
B3

B1

B0

i�
=
h
B3

B1

B0

i
2 T 0

1

Here is the �rst time the involutions do anything interesting:

�IT 0

1
� �1

�h
B3

B1

B0

i�
= �

h
�b3

�b1
B0

i
2 �T 0

1

Since �1 doesn't move us out of T 0
1, the negative identity map results in a move to

�T 0
1. Note that any time we are in a negative set, we are moving \up" the sequence

of matrices (or stalled where we are). Because the array did not correspond to a
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tree in the graph where 2 and 3 are identi�ed, the basic e�ect of �1 at that step

was to �nd the array with o�-diagonal entries that cancels it in the matrix. From

�T 0
1, we apply �

0
i
.

�IT1 � �
0
1

�
�
h

�b3
�b1

B0

i�
= �

h
�b3

�b1
B0

i
2 �T1

The next few involutions have the e�ect of switching columns:

�IT1 � �1

�
�
h

�b3
�b1

B0

i�
=
h

�b3
�b1

B0

i
2 T1

�IT1 � �
0
1

�h
�b3

�b1
B0

i�
= �

h
�b3

�b1
�B0

i
2 �T1

�IS0
1
� �1

�
�
h

�b3
�b1

�B0

i�
= �

h
�b3

�b1
�B0

i
2 �S01

�IS1 � �
0
1

�
�
h

�b3
�b1

�B0

i�
= �

h
�b3

�b1
�B0

i
2 �S1

And switching rows:

�IS1 � �1

�
�
h

�b3
�b1

�B0

i�
=
h

�b3
B0

b1

i
2 S1

�IS1 � �1

�h
�b3

B0

b1

i�
= �

h
�b3

B0

�b1

i
2 �S1

�IG0

0
� �1

�
�
h

�b3
B0

�b1

i�
= �

h
�b3

B0

�b1

i
2 �G0

0

We have de�ned the involutions in such a way that there is no passing the set Gi

when moving up; we apply the Matrix Tree Theorem again (the e�ect, in this case,

of �00):

�IG0

0
� �00

�
�
h

�b3
B0

�b1

i�
=
h
B3

B0

B1

i
2 G0

0

And from here on, it's easy for the rest of the step:

�IS1 � �1

�h
B3

B0

B1

i�
=
h
B3

B0

B1

i
2 S1
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�IS0
1
� �01

�h
B3

B0

B1

i�
=
h
B3

B0

B1

i
2 S01

�IT1 � �1

�h
B3

B0

B1

i�
=
h
B3

B0

B1

i
2 T1

�IT 0

1
� �01

�h
B3

B0

B1

i�
=
h
B3

B0

B1

i
2 T 0

1

�IG1
� �1

�h
B3

B0

B1

i�
=

 
1 -

�
�
�
�3

2
-0; (1)

!
2 G1

Since we've gotten to G1 and have a tree and a partial code, we are done with this

step.

Step 2

Starting where we left o�,

�IG0

1
� �01

 
1 -

�
�
�
�3

2
- 0; (1)

!
=
h
B3

B0

B1

i
2 G0

1

�IS2 � �2

�h
B3

B0

B1

i�
=
h
B3

B0

B1

i
2 S2

�IS02 � �
0
2

�h
B3

B0

B1

i�
=
h
B3

B0

B1

i
2 S02

�IT2 � �2

�h
B3

B0

B1

i�
=
h
B3

B0

B1

i
2 T2

Now is the �rst time in Step 2 that we cannot move on to the next set, because for

each of the above applications of involutions there was a corresponding element in

the next set. The elements of T2 can only be acted on by �02.

�02

�h
B3

B0

B1

i�
=
h
�b3

B0

B1

i
2 T2:



49

�IT2

�h
�b3

B0

B1

i�
= �

h
�b3

B0

B1

i
2 �T2:

From �T2, the involution �2 will either take us to S2 or else leave us in �T2 (in

this case, the latter):

�2

�
�
h
�b3

B0

B1

i�
= �

h
�b3

B0

B1

i
2 �T2:

Another application of a negative identity map is now required as part of the

algorithm of the Involution Principle.

�IT2

�
�
h

�b3
B0

B1

i�
=
h

�b3
B0

B1

i
2 T2:

Now we go back to the appropriate involution, �02 in this case:

�02

�h
�b3

B0

B1

i�
=
h

�b3
�B0

B1

i
2 T2:

�IT2

�h
�b3

�B0

B1

i�
= �

h
�b3

�B0

B1

i
2 �T2:

�IS0
2
� �2

�
�
h

�b3
�B0

B1

i�
= �

h
�b3

�B0

B1

i
2 �S02:

�IS2 � �
0
2

�
�
h

�b3
�B0

B1

i�
= �

h
�b3

�B0

B1

i
2 �S2:

Again we get stuck at a set. The involution �2 should either send us to T 0
1 or leave

us where we are, and it is the latter that occurs.

�2

�
�
h

�b3
�B0

B1

i�
= �

h
B0

b3

B1

i
2 �S2

It is time for another negative identity map:

�IS2

�
�
h
B0

b3

B1

i�
=
h
B0

b3

B1

i
2 S2:

Since we are back in S2, we apply �
0
2 followed by a negative identity map:

�IS0
2
� �02

�h
B0

b3

B1

i�
= �

h
B0

�b3
B1

i
2 �S2
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�IG0

1
� �2

�
�
h
B0

�b3
B1

i�
= �

h
B0

�b3
B1

i
2 �G0

1

This array does not correspond to a tree because there is a loop blob! 3. So we

toggle the diagonality of the cycle.

�IG0

1
� �01

�
�
h
B0

�b3
B1

i�
=
h
B0

B3

B1

i
2 G0

1

Now we are all set to go through to the end of the step:

�IS2 � �2

�h
B0

B3

B1

i�
=
h
B0

B3

B1

i
2 S2

�IS0
2
� �02

�h
B0

B3

B1

i�
=
h
B0

B3

B1

i
2 S02

�IT2 � �2

�h
B0

B3

B1

i�
=
h
B0

B3

B1

i
2 T2

And we continue:

�IT 0

2
� �02

�h
B0

B3

B1

i�
=
h
B0

B3

B1

i
2 T 0

2

�IG2
� �2

�h
B0

B3

B1

i�
=

 
12
3
- 0��

��
; (3; 1)

!
2 G2:

We are almost done, because the last step is always considerably shorter.

Step 3

From here we have

�IG0

2
� �02

 
12
3
- 0��

��
; (3; 1)

!
=
h
b0

b3

b1

i
2 G0

2;

and �nally,

�3

�h
b0

b3

b1

i�
= �(b0; b3; b1) 2 �S3:

Thus, the Blob Code for the tree 2! 1! 3! 0 is (3,1).

Notice how the Blob Code di�ers from the Happy Code: we are constantly

referring back to the altered graph. It turns out we need not use matrices at all.



Chapter 4

Tree Surgery for the Blob Code

A related algorithm for �nding the Blob Code for a tree involves progressively

identifying vertices, starting at n and ending with a blob-vertex consisting of all

the vertices from 1 to n. As the blob grows, so does the code; meanwhile, the

number of edges shrinks. The idea, as in the matrix method, is that if we consider

our tree to be a spanning tree within the complete directed graph (with loops),

every pair of vertices is identi�able. We keep track of the tree in the new graph

that would correspond to our original tree. The di�erence is that now we ignore

the matrices.

4.1 Tree Surgery Algorithm

The algorithm takes as its input a rooted tree (as a set of edges) whose vertices

are the labels f0; 1; : : : ; ng. The algorithm uses a function path(x) that �nds the

path (an ordered list of vertices) from x to 0, that is,

path(x) = (x; succ(x); succ(succ(x)); : : : ; 0):

Other procedures used are \remove edge" and \add edge."

Tree Surgery algorithm for the Blob Code

51
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begin

blob fng

code ()

i 1

repeat

if path(n� i) \ blob 6= ; then

code (succ(n� i); code)

remove edge (n � i)! succ(n� i)

blob blob[ fn� ig

else

code (succ(blob); code)

remove edge blob! succ(blob)

add edge blob! succ(n� i)

remove edge (n � i)! succ(n� i)

blob blob[ fn� ig

i i+ 1

until i = n

end.

Example:

0

4
@
@R

3
�
�	

2 1
@
@R

�
�	

Beginning with this tree, we create a blob containing a single vertex (the one with

the largest label).
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Step 1

0

4i
@
@R

3
�
�	

2 1
@
@R

�
�	

The blob contains only the vertex 4; n� i = 3 and code = (). Does the path from

3 to 0 go through the blob? No. So we follow the then instructions. We take

succ(blob), which is 0, and put it at the beginning of the code, then delete that

edge and add an edge from blob to succ(3) (which is 0). Then we delete the edge

from 3 to 0 and put 3 into the blob. The new tree is:

0

4
�



�
	3

?

2 1
@
@R

�
�	

Step 2

n � i = 2 and code = (0). Since i < n, we continue. Does the path from 2 to

0 go through the blob? Yes. We follow the else in the algorithm. Put succ(2),

which is 3, at the beginning of the code, get rid of that edge and put 2 in the blob.

0

4 3

?

�



�
	2

1
�
�	

Step 3

Now n � i = 1 and code = (3; 0). Since i > 0, we continue. Does the path

from 1 to 0 go through the blob? Yes. Prepend succ(1), which is 3 again, to the

code, get rid of that edge and put 1 in the blob.

Now we are done. i = n and code = (3; 3; 0), and we stop. Here is the new

tree:
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0

4 3

?

�



�
	2 1

To see what the tree algorithm (which doesn't even refer to matrices at all) has

to do with the matrix method, we note that the ith row of the initial matrix C 0
0

represents the possible edges out of i. Thus, a row operation that cancels most of

the entries of that row obliterates the information of what the edge out of i was.

This resembles the placing of i into the blob{since there is only one edge leaving the

blob, we no longer know where the individual vertex i was pointing. However, the

information is not entirely lost because the code-in-progress is still in the matrix.

In fact, the row operation followed by the column operation corresponds directly

to the blobbing of vertices and adding to the code.

More speci�cally, the relationship between the tree method and the matrix

method is as follows: At the end of step i, we are in the set Gi. The matrix C 0
i

represents the graph with vertices n � i; : : : ; n in the blob. The upper-left corner

with n � i rows and columns is the Matrix Tree Theorem matrix for that graph,

and the i rows with nothing except B on the diagonal represent the set of possible

codes-in-progress. If the path from n � i to 0 does not pass through the blob,

we follow the else at step i in the tree surgery algorithm, which corresponds to

getting to pass through matrices easily from G0
i�1 to Gi. If it does (ie, we follow

the then at step i in the tree surgery algorithm), the matrix method will involve

several bounces up and down within the matrices between Si and T
0
i
.

4.2 Tree Surgery Is A Bijection

The tree surgery method is reversible. The inverse algorithm takes a code

(c1; c2; : : : cn�1) and �nds the corresponding tree:

Algorithm to go from Blob Code to Tree

begin
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i 0

blob = f1; : : : ; ng

edges = fblob! 0g

repeat

i i+ 1

blob blob n fig

if path(c1) \ blob 6= ; then

add edge i! c1

else

add edge i! succ(blob)

remove edge blob! succ(blob)

add edge blob! c1

behead code

until i = n� 1

end.

It is easy to check that this algorithm undoes the Blob Code algorithm, one

step at a time.

4.3 The Two Methods Give the Same Blob Code

Theorem 4 The matrix method and the tree surgery method give the same Blob

Code.

Proof . We assume constant n and proceed by induction on the number of steps

i taken so far. The base case is i = 0, the zeroth step. Before we do anything

(using either method), we have a tree and an empty code. We consider the vertex

n to be a blob containing only one label (n). At the end of the 0th step, both

methods have the same code-in-progress (namely, an empty code) and the same

tree.
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Now we assume that at the end of the (i� 1)th step, the two methods result in

the same tree and code-in-progress.

At the beginning of step i, each method has a pair consisting of a tree with a

blob as one of the vertices and a partial code of length (i� 1). The blob contains

n� i+ 1; n� i+ 2; : : : ; n, so its size is i.

The matrix method requires following the involutions through sets of arrays.

Rows n� i through n� i+ 1 look like this in the sequence of matrices:

C 0
i�1 =2

6666666666666666664

1 : : : n � i n� i+ 1 n� i+ 2 : : : n

...
...

. . .
...

...
...

...

n� i �b1 : : : B � bn�i �

nX
n�i+1

bk �

nX
n�i+2

bk : : : �bn

n� i+ 1 �b1 : : : �bn�i B �

nX
n�i+1

bk �

nX
n�i+2

bk : : : �bn

n� i+ 2 0 : : : 0 0 B : : : 0
...

...
...

...
...

. . .
...

3
7777777777777777775

Ri =2
66666666664

...
...

...
...

: : : B � bn�i �

nX

n�i+1

bk �

nX

n�i+2

bk : : : �bn

: : : �bn�i � B + bn�i B �

nX

n�i+1

bk +

nX

n�i+1

bk �

nX

n�i+2

bk +

nX

n�i+2

bk : : : �bn + bn

: : : 0 0 B : : : 0

...
...

...
...

3
77777777775
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R0
i
=

2
66666666664

...
...

...
...

...

�b1 : : : B � bn�i �

nX
n�i+1

bk �

nX
n�i+2

bk : : : �bn

0 : : : �B B 0 : : : 0

0 : : : 0 0 B : : : 0
...

...
...

...
...

3
77777777775

Ci =

2
66666666664

...
...

...
...

...

�b1 : : : B � bn�i �

nX
n�i+1

bk �

nX
n�i+1

bk �

nX
n�i+2

bk : : : �bn

0 : : : �B +B B 0 : : : 0

0 : : : 0 0 B : : : 0
...

...
...

...
...

3
77777777775

C 0
i
=

2
66666666664

...
...

...
...

...

�b1 : : : B �

nX
n�i

bk �

nX
n�i+1

bk �

nX
n�i+2

bk : : : �bn

0 : : : 0 B 0 : : : 0

0 : : : 0 0 B : : : 0
...

...
...

...
...

3
77777777775

At step i in the matrix method, we are dealing with the sets G0
i�1 (the set of trees

(with a blob containing i labels) and partial codes of length i � 1), Si; S
0
i
; Ti; T

0
i

(the sets of arrays in the matrices above, respectively), and Gi (the set of trees

with a blob containing i+ 1 labels together with partial codes of length i).

Suppose we are at the start of step i. This means that no matter which method

we are using, we have a tree and a partial code. Let succ(blob) = l and succ(n�

i) = k. Also suppose that the �rst element in the partial code is bm. Note that

since we have a tree, l � n � i because all vertices with labels greater than n � i

are in the blob.
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An application of �ISi � �i leaves us with

2
664
...

Bk

Bl

Bm

...

3
775 2 Si.

�IS0
i
� �0

i

0
BB@
2
664
...

Bk

Bl

Bm

...

3
775
1
CCA =

2
664
...

Bk

Bl

Bm

...

3
775 2 S0i:

�ITi � �i

0
BB@
2
664
...

Bk

Bl

Bm

...

3
775
1
CCA =

2
664
...

Bk

Bl

Bm

...

3
775 2 Ti:

Note that these positive capitalized entries on the diagonal do not disappear from

the matrices.

�IT 0

i
� �0

i

0
BB@
2
664
...

Bk

Bl

Bm

...

3
775
1
CCA =

2
664
...

Bk

Bl

Bm

...

3
775 2 T 0

i
:

Next we will be applying �IGi
� �i, and there are two possible outcomes.

Case 1 Consider the case where the path from n � i to 0 does not go through

the blob (that is, k is not inverted in the original tree). If the path from k to 0

does not pass through the blob, then �IGi
� �i = (�; ) where  is the code from

Gi�1 with bl prepended to it and � is a tree containing the same edges as the tree

from Gi�1 with the following exceptions: n � i ! k has been deleted, n � i has

been added to the blob, and the edge blob ! l has been replaced by the edge

blob! k. This is a tree because if the path from n� i to 0 does not pass through

the blob, then moving the blob to the position where n� i was does not create a

cycle.

Note that the e�ect is exactly the same as the result of the tree surgery

method. Tree surgery would have removed and added exactly those same edges,

and prepended the same label to the code.
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Case 2 This is the more complicated case. Here, when we apply �i, we don't

get a tree because a cycle would be created (the path from n� i to 0 goes through

the blob, but now n� i should be in the blob with succ(blob) = k. Hence there

is a cycle containing blob and other vertices all of whose labels are less than n�i).

Thus, �IT 0

i
� �i

0
BB@
2
664
...

Bk

Bl

Bm

...

3
775
1
CCA is a negative element in T 0

i
with all entries

that correspond to edges in the cycle moved o� the diagonal. In this matrix,

row n � i contains �bk in the kth column; the rest of the o�-diagonal entries are

higher up in the matrix, including some unique entry in the n� i column (say br,

where r � n � i; this corresponds to an edge into blob). If k > n � i (that is,

succ(n� i) 2 blob), then the matrix will look a little di�erent than the one below;

we will deal with that case later.

Case 2a If k < n� i (k 6= n� i because then we would have a loop in the tree

at the start of the step), we have

�IT 0

i
� �i

0
BB@
2
664
...

Bk

Bl

Bm

...

3
775
1
CCA = �

2
666664

...
�br

...
�bk

Bl

Bm

...

3
777775 2 �T

0
i

Note that this �br represents an edge into the blob and thus r can be any label

greater than or equal to n� i. Also, there may be many vertices in the cycle that

is now o� the diagonal.

�ITi ��
0
i
of this gives the same array in �Ti. However, �ITi ��i of that switches

the entries in columns n� i and n� i+1, leaving us with an element of Ti because

R0
i
only has �bn�i above the diagonal in column n � i. In some row above n� i,

our array in Ti has �br in column n� i+1; it also has Bl in the (n� i+ 1; n� i)
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position; nothing else has moved (the (n� i; k) position contains �bk).

�ITi � �i

0
BBBBB@�

2
666664

...
�br

...
�bk

Bl

Bm

...

3
777775

1
CCCCCA =

2
666664

...
�br

...
�bk

Bl

Bm

...

3
777775

�ITi � �
0
i
changes the sign of the Bl in row n� i+ 1, leaving us in �Ti. This new

array appears in �S0
i
and �Si too: �IS0i � �i takes us to �S

0
i
and �ISi � �

0
i
takes

us to �Si.

�ITi � �
0
i

0
BBBBB@

2
666664

...
�br

...
�bk

Bl

Bm

...

3
777775

1
CCCCCA =

�

2
666664

...
�br

...
�bk

�Bl

Bm

...

3
777775 2 �Ti;

�IS0i � �i

0
BBBBB@�

2
666664

...
�br

...
�bk

�Bl

Bm

...

3
777775

1
CCCCCA =

�

2
666664

...
�br

...
�bk

�Bl

Bm

...

3
777775 2 �S

0
i
;
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and

�ISi � �
0
i

0
BBBBB@�

2
666664

...
�br

...
�bk

�Bl

Bm

...

3
777775

1
CCCCCA =

�

2
666664

...
�br

...
�bk

�Bl

Bm

...

3
777775 2 �Si:

Now we will end up switching the entries in rows n� i and n� i+1: �ISi � �i has

this e�ect, with the result that our new array in Si has Bl in the (n�1)th diagonal

entry and bk in the (n � i+ 1; k) position.

�ISi � �i

0
BBBBB@�

2
666664

...
�br

...
�bk

�Bl

Bm

...

3
777775

1
CCCCCA =

2
666664

...
�br

...
Bl

bk

Bm

...

3
777775 2 Si:

An application of �ISi � �
0
i
changes the sign of the bk in row n� i+ 1, putting us

in �Si:

�ISi � �
0
i

0
BBBBB@

2
666664

...
�br

...
Bl

bk

Bm

...

3
777775

1
CCCCCA = �

2
666664

...
�br

...
Bl

�bk
Bm

...

3
777775 2 �Si:

This same array appears in �G0
i�1 and is what we get by applying �IG0

i�1
��i. Now

when we apply �IG0

i�1
��0

i�1 we have a di�erent cycle. Here, the graph in question

has edges blob! k and (n� i)! l instead of vice versa. The o�-diagonal entries

must correspond to a cycle, so we move the cycle back onto the diagonal, landing
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in G0
i�1.

�IG0

i�1
� �0

i�1

0
BBBBB@�

2
666664

...
�br

...
Bl

�bk
Bm

...

3
777775

1
CCCCCA =

2
664
...

Bl

Bk

Bm

...

3
775 :

Note that the only way this array di�ers from the one we started with at the

very beginning of step i is that the entries in rows n � i and n � i + 1 have been

interchanged.

Now when we apply �i; �
0
i
; �i; �

0
i
with the appropriate negative identity maps in

between, we eventually reach2
664
...

Bl

Bk

Bm

...

3
775 2 T 0

i
;

and then

�IGi
� �i

0
BB@
2
664
...

Bl

Bk

Bm

...

3
775
1
CCA ;

which is a tree with edge blob! l (where n� i is now in the blob) together with

a code beginning with (bk; bm; : : : ). Since the tree surgery method would have

deleted the edge from n � i to k, placed n � i in the blob, prepended bk to the

code and left the edge blob! l, the matrix method had exactly the same e�ect.

Case 2b Here we treat separately the case where succ(n � i) 2 blob. In this

case, we have

�IT 0

i
� �i

0
BB@
2
664
...

Bk

Bl

Bm

...

3
775
1
CCA = �

2
664
...

�bk
Bl

Bm

...

3
775 2 �T 0

i
:
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�ITi � �
0
i

0
BB@�

2
664
...

�bk
Bl

Bm

...

3
775
1
CCA = �

2
664
...

�bk
Bl

Bm

...

3
775 2 �Ti:

Now �i will switch the columns of two of the entries.

�ITi � �i

0
BB@�

2
664
...

�bk
Bl

Bm

...

3
775
1
CCA =

2
664
...

�bk
Bl

Bm

...

3
775 2 Ti:

�ITi � �
0
i

0
BB@
2
664
...

�bk
Bl

Bm

...

3
775
1
CCA = �

2
664
...

�bk
�Bl

Bm

...

3
775 2 �Ti:

�0
i
is de�ned to change the sign of the entry Bl in row n � i+ 1, but nothing else

in the array changes. This element also occurs in the sets �S0
i
and �Si, so

�ISi � �
0
i
�IS0i � �i

0
BB@�

2
664
...

�bk
�Bl

Bm

...

3
775
1
CCA = �

2
664
...

�bk
�Bl

Bm

...

3
775 2 �Si:

In Case 2a we actually made it all the way up to the set G0
i�1, but this time we

do not; the next thing that happens is that the entries in rows n� i and n� i+ 1

are interchanged, with the requisite sign changes:

�ISi � �i

0
BB@�

2
664
...

�bk
�Bl

Bm

...

3
775
1
CCA =

2
664
...

Bl

bk

Bm

...

3
775 2 Si:

�ISi � �
0
i

0
BB@
2
664
...

Bl

bk

Bm

...

3
775
1
CCA = �

2
664
...

Bl

�bk
Bm

...

3
775 2 �Si:

�IG0

i�1
� �i

0
BB@�

2
664
...

Bl

�bk
Bm

...

3
775
1
CCA = �

2
664
...

Bl

�bk
Bm

...

3
775 2 �G0

i�1
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This array does not correspond to a tree because there is a loop blob! k

�IG0

i�1
� �0

i�1

0
BB@�

2
664
...

Bl

�bk
Bm

...

3
775
1
CCA =

2
664
...

Bl

Bk

Bm

...

3
775 2 G0

i�1

Now we can go ahead and apply (with the obvious negative identity maps in

between) �i; �
0
i
; �i; and �0

i
, eventually ending up with this same array in the set

T 0
i
. All of this had exactly the same e�ect that the manipulations in Case 2a

did{namely, we interchanged the two entries on the diagonal, switching bk with bl.

The same argument we used above shows that this had the same e�ect as the tree

surgery method.

Since we have accounted for all possible cases, we conclude that these two

methods give the same code at step i. Thus at step n the e�ect of the two methods

is the same, so by induction the Blob Code can be found using either method. ��



Chapter 5

Tree Surgery for the Happy Code

Considering that the matrix method did not refer back to the graph at each

step, it is surprising that there is a purely bijective method for �nding the Happy

Code. In fact, we do have another form of tree surgery for the Happy Code, so we

can avoid resorting to matrices and involutions.

5.1 Tree Surgery Algorithm

Begin by �nding the path from 1 to 0. The method consists of deleting succ(1)

from the path and moving it to a separate connected component of the graph, and

forming a cycle with it, then repeating the process. The algorithm corresponds

directly to the matrix/involution algorithm of chapter 2. The algorithm below

takes as its input a tree in the form of a set of edges.

The Tree Surgery Algorithm for Happy Code

begin

J  succ(1)

if J 6= 0 then

repeat

j  succ(1)

65
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remove edge 1! j

add edge 1! succ(j)

if j � J then

add edge j ! j

J  j

else

add edge j ! succ(J)

remove edge J ! succ(J)

add edge J ! j

until succ(1) = 0

else

fthe Happy Code is practically the same as the na��ve codeg

code (succ(2); succ(3); : : : ; succ(n))

end.

This algorithm turns out to be essentially equivalent to the matrix method shown

in Chapter 2.

5.2 An Example

Consider the tree 1 ! 3 ! 2 ! 4 ! 0. Step 1: pull succ(1) = 3 out of the

path from 1 to 0 and put it in a cycle.
1

?
2

?
4

?
0

3 -

One nice thing about the Happy Code is that we don't have to keep track of

the code as we go; we just read it o� at the end. Step 2: pull 2 (the new succ(1))

out of the path from 1 to 0 and put it in a cycle. Since it is not the largest vertex

in a cycle, we insert it after the largest (which is 3).
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1

?
4

?
0

3 2-�

The last step is to pull 4 out of the path from 1 to 0; it gets a loop because it

is the largest element of the cycles.

1

?
0

4 -

3 2-�

Now we can write down, in order, the successors of 2; 3; 4 to �nd the code:

(3; 2; 4). Notice how much faster the tree surgery procedure is! Also, it is nice to

know that it would be even faster if the path from 1 to 0 were shorter. Another

nice feature of this method is that we no longer have to keep track of the code as

we go; instead, we �nd it directly once we have �nished performing surgery on the

tree. The weight of the happy functional digraph at the end of the process is equal

to the weight of the original tree.

If the tree were branchier, the method would not be any more complicated.

Edges that are not part of the path from 1 to 0 are not a�ected by tree surgery; at

the end of the surgical procedures the code is the list of the respective successors

of all vertices � 2.

This tree surgery method is related to Joyal's proof that there are (n + 1)n�1

trees. See x7.2 for a discussion.

5.3 Tree surgery is a bijection

Again, there is a simple inverse for the Happy Code tree surgery. We assume

that we have a procedure that �gures out which vertices are in cycles. The input

is a code (c1; c2; : : : ; cn�1).

Algorithm to go from Happy Code to Tree
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begin

edges = f1! 0g

for i = 2 to n do

add edge i! ci�1

while cycles 6= ; do

J  max
j2cycles

j

k  succ(J)

add edge J ! succ(k)

remove edge J ! k

add edge k ! succ(1)

remove edge 1! succ(1)

add edge 1! k

end.

It is clear that this algorithm undoes the Happy Code tree surgery, one step at

a time.

5.4 The Two Methods Give the Same Happy

Code

5.4.1 A Lemma

In order to prove that the tree surgery method gives the same code as the

matrix method, we will need the following lemma. The notion of a cycle being

\active" or \inactive" is content-free. A cycle is \active" if we label it as active,

and inactive otherwise. Actually we will see later that \active" corresponds to

appearing o� the diagonal in the matrix, and \inactive" corresponds to being on

the diagonal.
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Lemma 4 The input for the following algorithm is an active loop at vertex L and

an active cycle (which may also be a loop) containing at least one vertex greater

than L. Let J be the largest element in the cycle. Then the output is the original

cycle, now inactive, with L inserted between J and succ(J).

begin

repeat

p largest vertex in an active cycle

q second-largest vertex in an active cycle

m succ(q)

add edge q! succ(p)

remove edge p! succ(p)

remove edge q ! m

add edge p! m

toggle \activity" of the cycle containing J

until there are no active cycles.

end.

Proof . We begin by noting that for a cycle of length c, the worst-case scenario

is that each edge (other than J ! succ(J)) is an ascent and all vertices are

larger than the one in the loop. For such a cycle, the algorithm terminates after

2c� 1 iterations. In fact, in this situation the iterative algorithm above is actually

equivalent to a recursive algorithm. This is proven by induction.

The base case is that the cycle is a loop at J . This is an Escher cycle of length

c = 1. The algorithm sets p = J , q = the vertex of the loop, and m = q. It

removes the loops and adds edges J ! q and q ! J , then toggles the activity

of the cycle containing J . There are no more active cycles and the algorithm has

inserted q directly after J in its cycle. Furthermore it has taken 21 � 1 = 1 step.

The induction hypothesis is that it takes 2c�1�1 steps to complete the algorithm

if the cycle is an Escher cycle of length c�1, and that the result is that of inserting

the loop vertex after J in the cycle.
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Now we consider an Escher cycle of length c containing only vertices larger

than the loop vertex. Since each vertex of the cycle is larger than the loop vertex,

the only way to be able to change the edge from the loop vertex (call it L) is to

make all but one of the vertices in the cycle inactive.

This is a slow process. The �rst step of the algorithm removes J from the

cycle, forming a loop which becomes inactive. Next, the second-largest vertex is

removed, and J becomes active again. The following step will form a 2-cycle with

these two vertices and make it inactive. The procedure continues until only the

smallest vertex from the cycle (the original succ(J)) is left in a loop, with J and

the rest of the vertices in an inactive cycle. By the induction hypothesis, this takes

2c�1 � 1 steps because it is precisely the reverse of adding that smallest vertex to

the cycle. The next step of the iterative algorithm switches the successors of L and

the old succ(J) and makes the rest of the vertices active again. The remaining

steps merely undo all of the previous steps, with the exception that L has been

inserted before the old succ(J) in all the cycles containing it. The number of steps

before we �nish is thus 2 � (2c�1 � 1) + 1 = 2c � 1. Furthermore, since L has been

inserted before succ(J), in the �nal cycle it appears right after J .

Thus we have the result in the case where the cycle is an Escher cycle all of

whose vertices are greater than L. However, in fact any cycle reduces to an Escher

cycle of vertices greater than L in the following way: any vertices smaller than L

will never be a�ected by the edge switching, because L is active until the bitter

end and is never the largest active vertex. So these vertices can be considered to be

chained to their successors and thus do not e�ect the length of time the algorithm

takes nor its e�ect. Furthermore, any vertices that fall in between a vertex and its

nearest greater neighbor are also chained to their successors. ��

Example:
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9 -2
@
@R3
�

�	6�8@
@I
7
�
��

4 -

Step 0 Active Inactive

When we switch the successors of the two largest vertices, we replace the edges

9 ! 2 and 8 ! 7 by the edges 9 ! 7 and 8 ! 2. This breaks our cycle into two

cycles, one of which is inactive:

Step 1 Active Inactive

8 -2

?
3�6

6
4 -

9 -7�

We repeat. We replace the edges 8! 2 and 6! 8 by the edges 6! 2 and 8! 8

(a loop) and reactivate the cycle containing 9.

Step 2 Active Inactive

8 -

2
@
@R
3�6

�
��

4 -

9 -7�

The two largest active vertices are 8 and 9, so 8 is inserted into 9's cycle.

Step 3 Active Inactive

8 - 7
�

�	
9@

@I

2
@
@R
3�6

�
��

4 -
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Now that the loop vertex, 4, is the second-largest active vertex, it gets inserted

into the other active cycle. Note that it ends up inserted just before succ(9). This

marks the approximate halfway point of the process. From now on we basically

undo everything we did.

Step 4 Active Inactive

8 - 7
�

�	
9@

@I
4 -2

?
3�6

6

Now we switch the edges from 8 and 9, which has the e�ect of removing 8 from 9's

cycle. Step 5 corresponds to Step 2, only with 4 inserted before 2 and the activity

of 9's cycle toggled.

Step 5 Active Inactive

4 -2

?
3�6

6

9 -7�

8 -

Now 8 will get inserted into the larger cycle, and 9's cycle is reactivated. Step

6 corresponds to Step 1, except that 4 has been inserted before 2 and the cycle

containing 9 has the opposite activity.

Step 6 Active Inactive

8 -4
@
@R2
�

�	3�6

6

9 -7�

Step 7 corresponds to Step 0.
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Step 7 Active Inactive

9 -4 -2

?
3

�
�	6�8@

@I
7
�
��

The end result is that of inserting 4 into the cycle, right after 9. It took, in this

case, 7 = 23 � 1 steps, because the cycle we started with is \equivalent" to the

following Escher cycle with vertices larger than 4:

9
@
@R6�8

�
��

Note that 2 and 3 (the two vertices less than 4, our loop vertex) are \chained" to-

gether and to 6, and their outgoing edges never change. Meanwhile, 7 is \chained"

to its successor, 9, because the edge into 7 is not an ascent.

5.4.2 The proof

Theorem 5 The tree surgery method gives the same Happy Code as the matrix

method.

Proof . We assume constant n and proceed by induction on the length of the

path from 1 to 0. The base case is the case where the tree includes the edge 1! 0.

In that case, the tree surgery method doesn't have to go through the repeat loop

at all and the code is given by (succ(2); succ(3); : : : ; succ(n)). The matrix method

goes as follows for the base case: �rst, an application of �IA0

0
��0 gives us an array

with Bsucc(i) in the ith diagonal position. Let ji = succ(i). Next,

�IA1
� �00

0
BBBBBBBB@

2
666666664

�

B0

Bj2

. . .

Bjn

3
777777775

1
CCCCCCCCA

=

2
666666664

�

B0

Bj2

. . .

Bjn

3
777777775
2 A1:
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Since the involutions have been de�ned in such a way that none of these diago-

nal entries ever get cancelled by a matrix operation, we have after many similar

applications

�IA0

n
� �n

0
BBBBBBBB@

2
666666664

�

B0

Bj2

. . .

Bjn

3
777777775

1
CCCCCCCCA

=

2
666666664

�

B0

Bj2

. . .

Bjn

3
777777775
2 A0

n
:

Now we have

�IAn+1
� �0

n

0
BBBBBBBB@

2
666666664

�

B0

Bj2

. . .

Bjn

3
777777775

1
CCCCCCCCA

= B0Bj2
: : :Bjn 2 An+1:

�n+1 (B0Bj2
: : :Bjn) = �b0Bj2

: : : Bjn 2 �A
0
n+1:

Here, since ji = succ(i), we end up with the same code we got by tree surgery.

Thus the base case is true.

Our induction hypothesis is that the two methods give the same code for all

happy functional digraphs where the path from 1 to 0 is of length i� 1. We show

that if we start with a functional digraph whose path from 1 to 0 is of length i,

both methods will manipulate the graph into one with a shorter path from 1 to 0.

The length of the path from 1 to 0 is i. As we start, we have an array with all

entries on the diagonal. We will automatically (as in the base case) make it down

to An+1 by a sequence of involutions with no complications, because none of these

diagonal entries get cancelled in the row operation arithmetic. Let succ(i) = ji
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and j1 = r. Then

�IAn+1
� �0

n
� � � � � �IA0

0
� �0

0
BBBBBBBB@

2
666666664

�

Br

Bj2

. . .

Bjn

3
777777775

1
CCCCCCCCA
= BrBj2

: : :Bjn
2 An+1:

Now since r 6= 0,

�n+1(BrBj2
: : : Bjn) = �BjrBj2

: : : br : : : Bjn 2 An+1;

and

�I 0
An
� �0

n
� �IAn+1

(�BjrBj2
: : : br : : :Bjn) =

�

2
666666666664

�br

Bjr

. . .

��

. . .

Bjn

3
777777777775
2 �A0

n
:

There will be no problem in applying involutions and we will move swiftly through

the sequence of sets �A0
n
;�An;�A

0
n�1;�An�1; : : : until we reach the one where

the � �rst appears in this (the rth) row.

�IAn�r+1
� �0

n�r

0
BBB@�

2
6664

�br
Bjr

...
��

...
Bjn

3
7775
1
CCCA =

2
6664

�

Bjr

...
+br

...
Bjn

3
7775 2 An�r+1:
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Now that we are in An�r+1, we apply �n�r+1:

�IAn�r+1
� �n�r+1

0
BBB@
2
6664

�

Bjr

...
+br

...
Bjn

3
7775
1
CCCA =

�

2
6664

�

Bjr

...
�br

...
Bjn

3
7775 2 �An�r+1:

This array appears in all of the previous matrices, so we get all the way back up

to A0
0. �0 toggles the diagonality of the cycle with the largest element. Note that

so far, what has happened is that we have switched the successors for 1 and r. In

other words, we have removed r from the path from 1 to 0, and created a loop at

r; 1 now points directly at what used to be after r on the path to 0.

Case 1 If r is the largest vertex in a cycle,

�IA0

0
� �0

0
BBB@�

2
6664

�

Bjr

...
�br

...
Bjn

3
7775
1
CCCA =

2
6664

�

Bjr

...
Br

...
Bjn

3
7775 2 A0

0:

We are done because the e�ect of the tree surgery method would have been exactly

the same: we would have removed r from the path from 1 to 0, and created a loop

on it. By the induction hypothesis, the two methods will give the same code

because the path from 1 to 0 now has length i� 1.

Otherwise, we probably still have a long way to go.

Case 2 If the largest element in a cycle is not r, then tree surgery has the e�ect

of inserting r after the largest element in a cycle, J .
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In this case, the application of �0 will move another cycle o� the diagonal. Our

new element of A0
0 looks like this:2

66666666666666664

�

Bjr

. . .

�br
. . .

�bk
. . .

Bjn

3
77777777777777775

;

where k is one of the vertices in the new o�-diagonal cycle, and k = succ(J) where

J is the largest vertex in a cycle. (�bk is in row J.) Nothing interesting happens

with the involutions until we reach An�J+1:

�IAn�J+1
� �n�J+1

0
BBBBBBB@

2
66666664

�

Bjr

...
�br

...
�bk

...
Bjn

3
77777775

1
CCCCCCCA

=

�

2
66666664

�

Bjr

...
�br

...
+bk

...
Bjn

3
77777775
2 �An�J+1:
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�IAn�J+1
� �0

n�J

0
BBBBBBB@

2
66666664

�

Bjr

...
�br

...
+bk

...
Bjn

3
77777775

1
CCCCCCCA

=

2
66666664

�bk
Bjr

...
�br

...
��

...
Bjn

3
77777775
2 An�J+1:

From here we can move through An�J+1; A
0
n�J+1; : : : until we reach the next set

where an o�- diagonal entry disappears. The next time it happens depends on how

far down in the matrix MnJ+1 the row with the next o�-diagonal entry appears.

Case 2a If r is the second-largest vertex in an o�-diagonal cycle, then we're in

business.

�IAn�r+1
� �n�r+1

0
BBBBBBB@

2
66666664

�bk
Bjr

...
�br

...
��

...
Bjn

3
77777775

1
CCCCCCCA

=

�

2
66666664

�bk
Bjr

...
+br

...
��

...
Bjn

3
77777775
2 �An�r+1:
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Now applications of involutions will switch the entries in row 0 and row r:

�IAn�r+1
� �0

n�r

0
BBBBBBB@
�

2
66666664

�bk
Bjr

...
+br

...
��

...
Bjn

3
77777775

1
CCCCCCCA

=

2
66666664

�br
Bjr

...
+bk

...
��

...
Bjn

3
77777775
2 An�r+1:

But we still don't get to move on to a matrix set with a larger subscript:

�IAn�r+1
� �n�r+1

0
BBBBBBB@

2
66666664

�br
Bjr

...
+bk

...
��

...
Bjn

3
77777775

1
CCCCCCCA

=

�

2
66666664

�br
Bjr

...
�bk

...
��

...
Bjn

3
77777775
2 �An�r+1

Note that now we are headed up (towardA0
0) again. The next interesting involution

occurs when we again have an element of the set where �� �rst appears in the J th
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row.

�IAn�J+1
� �0

n�J

0
BBBBBBB@
�

2
66666664

�br
Bjr

...
�bk

...
��

...
Bjn

3
77777775

1
CCCCCCCA

=

2
66666664

�

Bjr

...
�bk

...
+br

...
Bjn

3
77777775
2 An�J+1:

Now br is in the J th row. After changing its sign we will continuing applying

involutions whose images are in sets with decreasing subscripts:

�IAn�J+1
� �n�J+1

0
BBBBBBB@

2
66666664

�

Bjr

...
�bk

...
+br

...
Bjn

3
77777775

1
CCCCCCCA

=

�

2
66666664

�

Bjr

...
�bk

...
�br

...
Bjn

3
77777775
2 �An�J+1

and now we'll make it all the way back up to A0 without interruption. When we

get there, we note that now the only di�erence in our graph is that succ(J) = r

instead of k, and k is now in row r so succ(r) = k. In fact, we have inserted r

after the largest vertex in a cycle without changing anything else about the graph{

exactly what would've happened in the tree surgery method. Since all o�-diagonal
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entries are now in the same cycle with J , we have

�IA0

0
� �0

0
BBBBBBB@
�

2
66666664

�

Bjr

...
�bk

...
�br

...
Bjn

3
77777775

1
CCCCCCCA

=

2
66666664

�

Bjr

...
Bk

...
Br

...
Bjn

3
77777775
2 A0

0:

By the induction hypothesis, from here (a graph where the path from 1 to 0 is of

length (i� 1)) we know that the two methods give the same code.

Case 2b However, if r is not the second-largest vertex in a cycle, the procedure

is a bit longer. In general, Case 2 started with

2
66666666666666664

�

Bjr

. . .

�br
. . .

�bk
. . .

Bjn

3
77777777777777775

2 A0
0:

The result of applying the �rst bunch of involutions before we end up back at A0
0

again is to switch the rows of the lowest (meaning their row indices are largest)

two o�-diagonal entries. Let l be the second largest vertex in the cycle containing

J , and let m = succ(l). So our starting matrix actually looks something like this



82

(although it is possible that succ(l) = m = J):2
66666666666666666666664

�

Bjr

. . . �bl

�br
. . . �bJ

�bm
. . .

�bk
. . .

Bjn

3
77777777777777777777775

2 A0
0:

As before, we can get down to An�J+1 uneventfully, but then interesting things

happen:

�IAn�J+1
� �n�J+1

0
BBBBBBBBBB@

2
66666666664

�

Bjr

... �bl
�br

... �bJ
�bm

...
�bk

...
Bjn

3
77777777775

1
CCCCCCCCCCA

=

�

2
66666666664

�

Bjr

... �bl
�br

... �bJ
�bm

...
+bk

...
Bjn

3
77777777775
2 �An�J+1:
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�IAn�J+1
� �0

n�J

0
BBBBBBBBBB@

2
66666666664

�

Bjr

... �bl
�br

... �bJ
�bm

...
+bk

...
Bjn

3
77777777775

1
CCCCCCCCCCA

=

2
666666666664

�bk
Bjr

... �bl
�br

... �bJ
�bm

...
��

...
Bjn

3
777777777775
2 An�J+1:

Now we apply �n�J+1, and have no further interruptions until we reach An�l+1:

�IAn�l+1
� �n�l+1

0
BBBBBBBBBBB@

2
666666666664

�bk
Bjr

... �bl
�br

... �bJ
�bm

...
��

...
Bjn

3
777777777775

1
CCCCCCCCCCCA

=

�

2
666666666664

�bk
Bjr

... �bl
�br

... �bJ
+bm

...
��

...
Bjn

3
777777777775
2 �An�l+1:
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Here, the lowest o�-diagonal entry in the matrix was �bm in row l, so it changed

sign; now we apply �0
n�l.

�IAn�l+1
� �0

n�l

0
BBBBBBBBBBB@
�

2
666666666664

�bk
Bjr

... �bl
�br

... �bJ
+bm

...
��

...
Bjn

3
777777777775

1
CCCCCCCCCCCA

=

2
666666666664

�bm
Bjr

... �bl
�br

... �bJ
+bk

...
��

...
Bjn

3
777777777775
2 An�l+1:

Positive o�-diagonal entries never survive. We apply �n�l+1:

�IAn�l+1
� �n�l+1

0
BBBBBBBBBBB@

2
666666666664

�bm
Bjr

... �bl
�br

... �bJ
+bk

...
��

...
Bjn

3
777777777775

1
CCCCCCCCCCCA

=

�

2
666666666664

�bm
Bjr

... �bl
�br

... �bJ
�bk

...
��

...
Bjn

3
777777777775
2 �An�l+1:
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This array will take us back up to An�J+1 (this should remind you of what hap-

pened in Case 2a).

�IAn�J+1
� �0

n�J

0
BBBBBBBBBBB@
�

2
666666666664

�bm
Bjr

... �bl
�br

... �bJ
�bk

...
��

...
Bjn

3
777777777775

1
CCCCCCCCCCCA

=

2
66666666664

�

Bjr

... �bl
�br

... �bJ
�bk

...
+bm

...
Bjn

3
77777777775
2 An�J+1:

And our last little side trip:

�IAn�J+1
� �n�J+1

0
BBBBBBBBBB@

2
66666666664

�

Bjr

... �bl
�br

... �bJ
�bk

...
+bm

...
Bjn

3
77777777775

1
CCCCCCCCCCA

=

�

2
66666666664

�

Bjr

... �bl
�br

... �bJ
�bk

...
�bm

...
Bjn

3
77777777775
2 �An�J+1:
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This last matrix appears in all of the previous sets. Thus we pass through a number

of sets, �nally arriving at

�

2
66666666666666666666664

�

Bjr

. . . �bl

�br
. . . �bJ

�bk
. . .

�bm
. . .

Bjn

3
77777777777777777777775

2 �A0
0:

This is where we apply �0. Unfortunately, this time we are not as lucky as in

Case 2a, where everything moved back on diagonal. Note that this new matrix

corresponds to a graph that di�ers from the one at the start of Case 2 by only 2

edges{namely, we have switched the successors of J and l, the two largest vertices

in the cycle containing J . Necessarily we now have three cycles; everything in

between J and l has been shorted out and forms its own cycle. Now when we

apply �0, we move the cycle containing J onto the diagonal. This corresponds to
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the cycle containing J being considered inactive.

�IA0

0
� �0

0
BBBBBBBBBB@
�

2
66666666664

�

Bjr

... �bl
�br

... �bJ
�bk

...
�bm

...
Bjn

3
77777777775

1
CCCCCCCCCCA

=

2
666666666666664

�

Bjr

... �bl
�br

...
BJ

...
�bk

...
Bm

...
Bjn

3
777777777777775

2 A0
0

The cycle containing J is no longer o� the diagonal, so nothing will happen to it as

we move down the sequence of matrices (hence the notion of it being inactive). If

we let p be the largest vertex in a cycle that appears o� the diagonal at this stage,

and q be the second-largest, then essentially the same procedure we just �nished

will be duplicated, only with p as the lowest row with an o�-diagonal entry. Each

time we do this, the lowest two o�-diagonal entries in the array are switched, and

we toggle the diagonality (\activity") of the cycle containing J (which will change

as we go). But the e�ect of this switching in the matrix is the trading of successors

for p and q at each stage, and thus this matrix process is equivalent to the graph

surgery from Lemma 4

Now we appeal to the lemma. The e�ect of this huge process is to insert r

after J in the cycle containing J . Furthermore, since r has been removed from the

path joining 1 to 0, the new happy functional digraph has a shorter path. Thus,

by induction, the tree surgery method and the matrix method give the same code.

��



Chapter 6

The Dandelion Code

The method for this code is sort of a m�elange of the methods of the Happy

Code and the Blob Code. As we did for the Blob Code, we consider the n � n

submatrix obtained from D̂�Â by crossing out the zeroth row and column, and we

apply the Matrix Tree Theorem at every possible opportunity. However, following

the method of the Happy Code, we only do row operations and we always subtract

the top row. We will again use B to denote
P

n

0 Bj.

The matrix we start with, with rows and columns indexed from 1 to n, is

N 0
0 =

2
666664

B � b1 �b2 : : : �bn

�b1 B � b2 : : : �bn
...

...
. . .

...

�b1 �b2 : : : B � bn

3
777775 :

We will subtract the �rst row from each of the other rows in turn, in the usual

way: from the bottom up, with cancellation being a separate step.

N1 =

2
666664

B � b1 �b2 : : : �bn

�b1 B � b2 : : : �bn
...

...
. . .

...

�b1 �B + b1 �b2 + b2 : : : B � bn + bn

3
777775 ;

88
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and we cancel only terms in the nth row at this point.

N 0
1 =

2
666664

B � b1 �b2 : : : �bn

�b1 B � b2 : : : �bn
...

...
. . .

...

�B 0 : : : B

3
777775 :

Next we subtract the �rst row from the (n� 1)th row, and we continue; at step i,

we subtract row 1 from row (n� i+ 1), until we reach the last matrix:

N 0
n�1 =

2
666666664

B � b1 �b2 �b3 : : : �bn

�B B 0 : : : 0

�B 0 B : : : 0
...

...
...

. . .
...

�B 0 0 : : : B

3
777777775
:

It may not be clear by inspection what detN 0
n�1 is, but we already know the answer

because of the Matrix Tree Theorem.

6.1 The Sets

The sequence of sets is F0; F
0
0;D1;D

0
1; F1; : : : ; F

0
n�1. F0 is the set of trees in the

original graph; F 0
0 is the set of arrays from N 0

0. For 1 � i � n � 1, the set Fi

is the set of spanning trees in an altered graph. The altered graph at step i has

the same edges out of 1; 2; : : : ; n� i as the original graph, and each of the vertices

n� i+1; : : : ; n has multiple edges pointing to 1 with certain weights, but no edges

to any other vertex. Speci�cally, at step i, we replace the edge n � i + 1 ! j in

the graph at step i by an edge n � i + 1 ! 1 with weight Bj, for each j. After

all, if we apply the Matrix Tree Theorem to N 0
1 (for example), we see that row

n represents edges n ! j and has mostly zeroes, implying that there is no edge

from n to any vertex besides 1. If an o�-diagonal entry is a sum, it corresponds to

multiple edges, each with monomial weight. So for 1 � i � n � 1, Fi is the set of
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spanning trees in the altered graph corresponding to the matrix at step N 0
i
. Di is

the set of arrays from Ni and D
0
i
is the set of arrays from N 0

i
. For 1 � i � n � 2,

F 0
i
= D0

i
. Finally, F 0

n�1 is the set of codes.

Note that the last graph, whose spanning trees make up Fn�1, has n + 1

monomial-weighted edges of the form k ! 1 for each k = 2; : : : ; n, and one edge

1 ! k for each k = 0; 1; 2; : : : ; n. However, since any spanning tree rooted at 0

must contain an edge into 0, we know that the only possible edge out of 1 that

can occur in a spanning tree is the edge 1 ! 0, so that Fn�1 can also be thought

of as the set of spanning trees of the graph below.

?
0

1
���
-
@@R?��	�

@@I
��*
HHj
A
AU
�
�� ���
HHY

�
��
A
AK

This picture should enlighten the reader as to the name for this Code.

6.2 The Involutions

The involutions are de�ned very similarly to the ones for the Blob Code.

As usual, the �rst involution, �00 : F0 � F
0
0 ! F0 � F

0
0, takes each tree in the

original graph to the corresponding array in N 0
0, and pairs up the extra arrays

according to toggling the diagonality of the cycle containing the greatest element.

For 1 � i � n�1, �i : D
0
i
�Fi! D0

i
�Fi is the involution of the bijective proof

of the Matrix Tree Theorem, which matches each positive array from N 0
i
(that is,

each element of (D0
i
)+) to a negative tree in �Fi. Meanwhile, for 0 � i � n � 2,

�0
i
: Fi � F

0
i
! Fi � F

0
i
is essentially the negative of map �i; it matches trees and

arrays in the same way but with opposite signs.

For 1 � i � n � 1, �i : F
0
i�1 �Di ! F 0

i�1 �Di is the involution that matches

arrays to one another according to the row operation. Thus if a 2 �Di and the
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entry in row n � i+ 1 is +bj or �Bj, then �i(a) = a0 2 �Di where a
0 is obtained

by interchanging and negating rows 1 and n � i+ 1. For all other a 2 F 0
i�1 �Di,

�i(a) = �a (in �Di if a 2 F
0
n�1 and vice versa).

For 1 � i � n � 1, �0
i
: Di �D

0
i
! Di �D

0
i
is the involution that matches up

arrays according to the arithmetic within entries in row n � i+ 1. If a 2 Di and

the entry in row n� i+1 is �bj, then �
0
i
(a) = a0 2 Di where a

0 is obtained from a

by changing the sign of the entry in row n � i + 1; for all other a, �0
i
(a) = �a (in

Di if a 2 �D
0
i
and vice versa).

The �nal involution �̂n�1 : Fn�1�F
0
n�1 ! Fn�1�F

0
n�1 matches trees to codes.

The code for a tree is given by the weights of the outgoing edges from vertices

2; 3; : : : ; n in order. Thus if the weight of the edge i ! 1 in the tree � is wi for

each i = 2; 3; : : : n, then �̂n�1(� ) = (w2; w3; : : : ; wn).

6.3 How to Find the Dandelion Code

Theorem 6 Given the sets F0; F
0
0;D1;D

0
1; F1; : : : ; F

0
n�1 and the sign-reversing in-

volutions �00; �1; �
0
1; �1; �

0
1; : : : ; �

0
n�1; �̂n�1, we can construct the bijection between F0

(trees in our original graph) and Dn (codes).

Proof . Again, our sets and involutions satisfy the hypotheses of Lemma 3, so

we can construct the bijection. ��

6.3.1 An example

For n = 4, consider the tree 1 ! 3! 4! 2! 0 2 F0. First, the Matrix Tree

Theorem tells us what array corresponds to this tree.

�00(1! 3! 4! 2! 0) = �

�
B3

B0

B4

B2

�
2 �F 0

0:

And the obligatory negative identity map:

�IF 0

0

�
�

�
B3

B0

B4

B2

��
=

�
B3

B0

B4

B2

�
2 F 0

0:



92

By now this is child's play.

�ID1
� �1

��
B3

B0

B4

B2

��
=

�
B3

B0

B4

B2

�
2 D1:

�ID0

1
� �01

��
B3

B0

B4

B2

��
=

�
B3

B0

B4

B2

�
2 D0

1:

Now it gets slightly tricky. This array does not correspond to a tree in the graph

where 4 only has edges pointing at 1, because it represents the following functional

digraph:

0

2

?

3 4

1
�

�	 -@
@IB2

The next step is to apply �1 to the array; the cycle gets moved o� the diagonal:

�ID0

1
� �1

��
B3

B0

B4

B2

��
= �

� �b3
B0

�b4
�B2

�
2 �D0

1

�ID1
� �01

�
�

� �b3
B0

�b4
�B2

��
= �

� �b3
B0

�b4
�B2

�
2 �D1

�ID1
� �1

�
�

� �b3
B0

�b4
�B2

��
=

�
B2

B0

�b4
+b3

�
2 D1

�ID1
� �01

��
B2

B0

�b4
+b3

��
= �

�
B2

B0

�b4
�b3

�
2 �D1

�IF 0

0
� �1

�
�

�
B2

B0

�b4
�b3

��
= �

�
B2

B0

�b4
�b3

�
2 �F 0

0:

Since we still have a cycle, the e�ect of �00 will be to put it back on the diagonal.

�IF 0

0
� �00

�
�

�
B2

B0

�b4
�b3

��
=

�
B2

B0

B4

B3

�
2 F 0

0
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�ID1
� �1

�
�

�
B2

B0

B4

B3

��
=

�
B2

B0

B4

B3

�
2 D1

�ID0

1
� �01

�
�

�
B2

B0

B4

B3

��
=

�
B2

B0

B4

B3

�
2 D0

1

Now �1 will give us a tree:

�IF1 � �1

��
B2

B0

B4

B3

��
=

3 -4 -1
B3

?
2

?
0

When we apply �IF 0

1
� �01 to this, we get back the same array we left in D0

1, only

now we are in F 0
1. We continue the same process.

�ID2
� �2

��
B2

B0

B4

B3

��
=

�
B2

B0

B4

B3

�
2 D2;

�ID0

2
� �02

��
B2

B0

B4

B3

��
=

�
B2

B0

B4

B3

�
2 D0

2:

Once again we use the Matrix Tree Theorem, this time in the form of �2, to �nd

out if we have a tree in the digraph where 3 and 4 have multiple outgoing edges

to 1.

�IF2 � �2

��
B2

B0

B4

B3

��
=

0

2

?

1

?

4 -
B3

3

?B4

We do, so we move on. �02 followed by �IF 0

2
gives us the same array we left behind

before reaching that tree.

�ID3
� �3

��
B2

B0

B4

B3

��
=

�
B2

B0

B4

B3

�
2 D3;
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�ID0

3
� �03

��
B2

B0

B4

B3

��
=

�
B2

B0

B4

B3

�
2 D0

3:

Now we run into trouble again. This array corresponds to a graph with a cycle

between 1 and 2, so �3 has the following e�ect:

�ID0

3
� �3

��
B2

B0

B4

B3

��
= �

�
�b2

�B0

B4

B3

�
2 �D0

3:

�ID3
� �03

�
�

�
�b2

�B0

B4

B3

��
= �

�
�b2

�B0

B4

B3

�
2 �D3

�ID3
� �3

�
�

� �b2
�B0

B4

B3

��
=

�
B0

+b2
B4

B3

�
2 D3

�ID3
� �03

��
B0

+b2
B4

B3

��
= �

�
B0

�b2
B4

B3

�
2 �D3

This does not correspond to a tree in the graph where 3 and 4 have edges only to

one, because there is a loop at the vertex 2.

�ID3
� �3

�
�

�
B0

�b2
B4

B3

��
=

�
B0

B2

B4

B3

�
2 D3;

�ID0

3
� �03

��
B0

B2

B4

B3

��
=

�
B0

B2

B4

B3

�
2 D0

3;

and �nally

�IF3 � �3

��
B0

B2

B4

B3

��
=

0

1

?

4 -
B3

3

?B4

2�
B2

At this point we can read the code o� from the picture by looking at the weights

of the edges coming out of vertices 2; 3; 4 in order. �IF 0

n�1
� �̂n�1 of this tree is

its dandelion code: (B2; B4; B3) � (2; 4; 3). Note that although our ending tree

looks di�erent from the original tree, its total weight is equal to the weight of the

original tree.



95

6.4 Tree Surgery Method

The same code can be found by skipping the matrix steps in between, since we

can predict their e�ect.

The plan is this: We take the tree, and at step i we remove the edge n�i+1!

succ(n� i+1) and instead put in an edge n� i+1! 1 with weight Bsucc(n�i+1).

If no cycle is created in the process, then we move on to the next step. If there is

a cycle, we have to do something about it: we remove the edges 1! succ(1) and

n�i+1! 1 and replace them by edges 1! succ(n�i+1) and n�i+1! 1, this

last edge having weight Bsucc(1). At the end, we read o� a version of the na��ve

code from the vertices 2; : : : ; n (instead of the successors of each vertex (since each

points at 1 now), we look at the weights of these edges). The algorithm takes as

its input a tree as a set of edges.

Tree Surgery Method for Dandelion Code

begin

for i = 1 to n� 1 do

m succ(n� i+ 1)

k  succ(1)

remove edge (n� i+ 1)! m

add edge (n� i+ 1)! 1 with weight Bm

if a cycle has been created then

remove edge 1! k

remove edge (n� i+ 1)! 1

add edge 1! m

add edge (n� i+ 1)! 1 with weight Bk

for j = 2 to n do

wj  the weight of the edge j ! 1

code (w2; w3; : : : ; wn)

end.
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In section x7.2 we will discuss the relationship between the Dandelion Code

and Joyal's proof of Cayley's formula in [6] as well as the bijection in [4]. In fact

this algorithm turns out to di�er only in notation from one given by E�gecio�glu and

Remmel in [4]. What is beautiful is the fact that the matrix method and the tree

surgery method result in this same bijection. Using our method, we can see the

underlying relationship of the tree surgical bijection with linear algebra and the

Matrix Tree Theorem.

Example:

5

?
1

?

4
�
�	

2

?
3

?
0

The �rst step is to remove the edge 5 ! 1 and replace it by an edge 5 ! 1 of

weight B1. This is a bit redundant. The point is that whatever the successor of 5

is becomes the subscript of the weight of the edge 5! 1.

5 -
B1

1

?

4
�
�	2

?
3

?
0

The next step removes the edge 4 ! 2 and replaces it by an edge 4 ! 1 with

weight B2. This does not create a cycle, so this is another quick step.
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5 -
B1

1

?

4
@
@R
B2

2

?
3

?
0

Now we remove the edge 3! 0 and replace it by an edge 3! 1 of weight B0.

5 -
B1

1

?

4
@
@R
B2

2

?
3�
�

@@I

B0

0

We have created a cycle, so we'd better �x it. We remove the edge 1 ! 2 and

replace it by the edge 1 ! 0, and replace the edge 3 ! 1 with weight B0 by an

edge 3! 1 with weight B2.

5 -
B1

1

?

4
@
@R
B2

0

3
�
�	
B2

2�

The last step is to replace the edge 2! 3 by an edge 2! 1 of weight B3.

5 -
B1

1

?

4
@
@R
B2

0

3
�
�	
B2

2�
B3

Now we look at the weights. The code is (B3; B2; B2; B1).

The inverse algorithm is fairly self-explanatory. It takes a code (c1; c2; : : : ; cn)

and �nds the corresponding tree.

Algorithm to go from Dandelion Code to Tree
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begin

edges f1! 0g

for i = 2 to n do

add edge i! 1 of weight ci�1

for i = 2 to n do

k  the subscript of the weight of the edge i! 1

remove edge i! 1

add edge i! k

if cycles 6= ; then

m succ(1)

remove edge i! k

add edge 1! k

remove edge 1! m

add edge i! m

end.

6.5 The Two Methods Give the Dandelion Code

Theorem 7 The tree surgery method gives the same Dandelion Code as the matrix

method.

Proof . Again, we assume constant n and proceed by induction on step i. The

base case is i = 0. At the start of the zeroth step, using either method, we have a

tree in this original graph.

At the end of the ith step, which is the start of the (i + 1)th step, we assume

that both methods have led to the same tree in which all vertices j � n � i + 1

have weighted edges with heads at 1.
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The matrices are

N 0
i
=

2
66666666666664

B � b1 �b2 : : : �bn�i �bn�i+1 : : : �bn

�b1 B � b2 : : : �bn�i �bn�i+1 : : : �bn
...

...
. . .

...
... : : :

...

�b1 �b2 : : : B � bn�i �bn�i+1 : : : �bn

�B 0 : : : 0 B : : : 0
...

...
...

...
. . .

...

�B 0 : : : 0 0 : : : B

3
77777777777775
;

Ni+1 =

2
66664

B�b1 �b2 ::: �bn�i �bn�i+1 ::: �bn
�b1 B�b2 ::: �bn�i �bn�i+1 ::: �bn

...
...

...
...

... :::

...
�b1�B+b1 �b2+b2 ::: B�bn�i+bn�i �bn�i+1+bn�i+1 ::: �bn+bn

�B 0 ::: 0 B ::: 0

...
...

...
...

...
...

�B 0 ::: 0 0 ::: B

3
77775 ;

and

N 0
i+1 =

2
66666666666664

B � b1 �b2 : : : �bn�i �bn�i+1 : : : �bn

�b1 B � b2 : : : �bn�i �bn�i+1 : : : �bn
...

...
. . .

...
... : : :

...

�B 0 : : : B 0 : : : 0

�B 0 : : : 0 B : : : 0
...

...
...

...
. . .

...

�B 0 : : : 0 0 : : : B

3
77777777777775
:

Let wj represent the weight of the edge j ! 1 for these vertices (remember that

for each j, wj = br for some r), and let mk = succ(k) for 1 � k � n � i. In the
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matrix method, the tree is an element of Fi. When we apply �IF 0

i
� �0

i+1, we get2
666666666664

Bm1

. . .

Bmn�i

wn�i+1

. . .

wn

3
777777777775
2 F 0

i
:

Now we proceed as usual for the matrix method:

�IDi+1
� �i+1

0
BBB@
2
6664

Bm1

...
Bmn�i

wn�i+1

...
wn

3
7775
1
CCCA =

2
6664

Bm1

...
Bmn�i

wn�i+1

...
wn

3
7775 2 Di+1;

and

�ID0

i+1
� �0

i+1

0
BBB@
2
6664

Bm1

...
Bmn�i

wn�i+1

...
wn

3
7775
1
CCCA =

2
6664

Bm1

...
Bmn�i

wn�i+1

...
wn

3
7775 2 D0

i+1:

Now we note that the next step depends on the status of our tree in the new graph.

Case 1 Suppose that

�IFi+1 � �i+1

0
BBB@
2
6664

Bm1

...
Bmn�i

wn�i+1

...
wn

3
7775
1
CCCA
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is a tree in Fi+1. We have removed the edge (n � i) ! mn�i, and added an edge

(n � i)! 1 with weight Bmn�i
. We set wn�i = Bmn�i

, and are �nished with this

step. Clearly we have the same tree we would have if we had used the tree surgery

method.

Case 2 Suppose that

�i+1

0
BBB@
2
6664

Bm1

...
Bmn�i

wn�i+1

...
wn

3
7775
1
CCCA

is another array in D0
i+1. The only way for this to happen is if this array does not

correspond to a tree in the graph where all of (n � i)'s edges point to 1. Since

we started at a tree where all the vertices greater than n � i point at 1, the only

possibility is that there is a cycle including both (n� i) and 1. None of the vertices

j � n � i + 1 can appear in this cycle since it includes only the vertices on the

path from 1 to (n� i) and these vertices all point to 1; hence, the bottom portion

of the matrix is not a�ected. Thus,

�ID0

i+1
� �i+1

0
BBB@
2
6664

Bm1

...
Bmn�i

wn�i+1

...
wn

3
7775
1
CCCA =

�

2
6664

�bm1

...
�Bmn�i

wn�i+1

...
wn

3
7775 2 �D0

i+1;

with as many o�-diagonal entries above row n � i+ 1 as there are vertices in the

cycle being moved o� the diagonal. These entries appear in all (i; j) positions
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satisfying the condition that i! j is an edge in the cycle.

�IDi+1
� �0

i+1

0
BBB@�

2
6664

�bm1

...
�Bmn�i

wn�i+1

...
wn

3
7775
1
CCCA =

�

2
6664

�bm1

...
�Bmn�i

wn�i+1

...
wn

3
7775 2 �Di+1;

since all entries in N 0
i+1 appear also in Ni+1. However, next we switch entries in

rows n� i and 1:

�IDi+1
� �i+1

0
BBB@�

2
6664

�bm1

...
�Bmn�i

wn�i+1

...
wn

3
7775
1
CCCA =

2
6664

Bmn�i

... :::

+bm1
wn�i+1

...
wn

3
7775 2 Di+1:

Note that this will not take everything back to the diagonal (bm1
is not on the

diagonal in these next few arrays).

�IDi+1
� �0

i+1

0
BBB@
2
6664

Bmn�i

... :::

+bm1
wn�i+1

...
wn

3
7775
1
CCCA =

�

2
6664

Bmn�i

... :::

�bm1
wn�i+1

...
wn

3
7775 2 �Di+1
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�IF 0

i
� �i+1

0
BBB@�

2
6664

Bmn�i

... :::

�bm1
wn�i+1

...
wn

3
7775
1
CCCA =

�

2
6664

Bmn�i

... :::

�bm1
wn�i+1

...
wn

3
7775 2 �F 0

i
:

Things �nally get straightened out in the next step; all the o�-diagonal entries are

returned to the diagonal because there is still only one cycle:

�IF 0

i
� �0

i+1

0
BBB@�

2
6664

Bmn�i

... :::

�bm1
wn�i+1

...
wn

3
7775
1
CCCA =

2
6664

Bmn�i

...
Bm1

wn�i+1

...
wn

3
7775 2 F 0

i
;

where now all entries are on the diagonal. This holds because the result of switching

the entries in rows n � i and 1 is to get rid of the edges from those two vertices

and replace them by the edges 1 ! mn�i and (n � i) ! m1. Since there was a

cycle containing these vertices before (the cycle was 1! m1 ! � � � ! (n� i)! 1,

where the last edge had weight Bmn�i
), what we have done is to remove 1 from

the cycle and pull the cycle out of the tree; every vertex that was in the cycle has

been removed from the path joining 1 to 0, and 1 is in the component of the graph

that is still a tree. This lone cycle has to be returned to the diagonal. Now we can
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follow the involutions joyfully back down the sequence of matrices:

�ID0

i+1
� �0

i+1 � �IDi+1
� �i+1

0
BBB@
2
6664

Bmn�i

...
Bm1

wn�i+1

...
wn

3
7775
1
CCCA =

2
6664

Bmn�i

...
Bm1

wn�i+1

...
wn

3
7775 2 D0

i+1:

(There are no interesting steps in between.) When we apply �i+1 to this matrix,

we get a tree in the graph where n� i has edges only to 1. This is simply because

n � i is no longer on the path from 1 to 0. We note that the weight of the new

edge (n � i) ! 1 is Bm1
, so we set wn�i = Bm1

and are �nished with this step.

This is exactly the same as the tree surgery result.

Having accounted for all the cases, we see that at the end of step i+1, the tree

surgery method and the matrix method give the same weights of edges for vertices

j � n� i. By induction, we conclude that at the end of step n� 1, both methods

give the same weights and that consequently, the Dandelion code found will be the

same using each method. ��

It is interesting to note that although the Dandelion matrix method seemsmore

closely related to the Blob matrix method than the Happy one, the tree surgery

algorithm is closer to the Happy Code.



Chapter 7

Permutations of the na��ve code

7.1 The Happy Code: an easier method

We have a third method for the Happy Code, that depends only on taking the

na��ve code (the input is in the form p = (p1; p2; : : : pn) = (Bj1
; Bj2

; : : : ; Bjn)) and

permuting it according to the following algorithm:

Fast algorithm for Happy Code

begin

while p1 6= B0 do

a subscript of p1

t pa

pa  ba

p1  t

k n

while k > a and 8j, pk 6= bj do

k  k � 1

t pa

pa  pk

pk  t

105
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happycode the subscripts of (p2; p3; : : : ; pn), in order

end.

For example, if we start with the tree

0

9
@
@R

4
�
�	

3

?

5
@
@R

2
�
�	

7

?

6
@
@R

1
��	

8

?

then the procedure goes as follows: �rst we note that the na��ve code is

B7B4B9B0B4B7B3B1B0.

B7B4B9B0B4B7B3B1B0

?
B3B4B9B0B4B7b7B1B0 �! B9B4b3B0B4B7b7B1B0

?
B9B4b7B0B4B7b3B1B0

?
B0B4b7B0B4B7b3B1b9

We �nd the code by looking at the subscripts after the initial B0: the Happy Code

for the tree shown above is (4,7,0,4,7,3,1,9).

Theorem 8 The algorithm above gives the Happy Code as de�ned in previous

sections.

Proof . At any stage in this algorithm, a lower-case entry indicates membership

in a cycle. We think of the ith entry as having succ(i) as its subscript. All this

method does at each step is to change succ(1) (the �rst entry) to succ(succ(1))
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and insert succ(1) after the largest vertex in a cycle, since the largest vertex will

be the furthest lower-case entry to the right. This is exactly what tree surgery

accomplishes, so this is essentially a shorthand notation for tree surgery. Note

that this also proves that the algorithm terminates. ��

7.2 The Dandelion Code: an easier method

An even faster method exists for the Dandelion Code. The algorithm has as its

input a tree as a set of edges. It uses the previously mentioned function path(x)

which �nds the path from x to 0, returning a list of vertices (x; succ(x); : : : ; 0).

Fast algorithm for Dandelion Code

begin

p path(1)

m length of p

p (p2; : : : ; pm�1)

m m� 2

repeat

a the position of the maximum element of p

(p1; p2; : : : ; pa) becomes a cycle

p (pa+1; : : : ; pm)

until p = ;

rewrite the resulting collection of cycles as a permutation in 2-line notation

this permutation gives the new succ function on the vertices on the path

code (succ(2); succ(3); : : : ; succ(n))

end.

Example: We begin with the following tree:
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0

7
@
@R

4
�
�	

3

?

5
@
@R

2
�
�	

9

?

6
@
@R

1
�
�	

8

?

and the procedure goes as follows:

First we note that the path from 1 to 0 is (9,3,7). We want to write this as

cycles according to the algorithm. 9 is the largest thing on the path, so we end a

cycle after it. Then 3 is not the largest remaining label on the path, so we don't

end a cycle after it, but 7 is, so we do. Then we have to include the successors of

the other vertices:

(9; 3; 7) �! (9)(37) �!

�
379

739

�
�!

�
23456789

47049319

�

The code is given by the bottom line: (4,7,0,4,9,3,1,9).

Another example: If we start with the tree

1! 6! 4! 9! 8! 3! 2! 5! 7! 0;

then the procedure is as follows:

(6; 4; 9; 8; 3; 2; 5; 7) �! (649)(8)(3257) �!

�
23456789

52974386

�
�!

�
23456789

52974386

�

(Here, the path consisted of all the other vertices in the graph, so the last 2 steps

look identical.) So the Dandelion Code for this tree is (5,2,9,7,4,3,8,6).

At �rst glance it may not be clear that this algorithm is even a bijection.

However, it is. We will need the following:

De�nition 24 If S is a set of disjoint cycles, let � be the partial ordering on S

de�ned by C1 � C2 if and only if the largest vertex in C1 is less than the largest

vertex in C2.
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Theorem 9 The fast algorithm for the Dandelion Code has as its inverse the

following algorithm:

Fast Algorithm to go from Dandelion Code to Tree

begin

edges f1! 0g

for i = 2 to n do

add edge i! ci�1

write cycles as permutations in cycle notation

write them in descending order according to �

within each cycle, cyclically reorder so that the largest element appears last

s the permutation with the parentheses ignored, as a list

prepend 1 to s

append 0 to s

for j = 1 to jsj � 1 do

remove edge sj ! succ(sj)

add edge sj ! sj+1

end.

This is clearly the inverse of the Fast Algorithm for the Dandelion Code. In

slightly di�erent form, these algorithms were previously discovered by E�gecio�glu

and Remmel [4], apparently using some version of the Involution Principle [10].

Their bijection �n+1 is isomorphic to our bijection as follows. Starting with a tree

whose vertices are labelled f1; 2; : : : ; n+1g, we subtract from n+1 the labels of all

vertices besides 1 on the path from 1 to n+ 1. Then we apply the fast algorithm

for the Dandelion Code, and then subtract from n + 1 the labels of all vertices

in cycles. The result is the same functional digraph that E�gecio�glu and Remmel

produced, except that we also have an edge 1! 0 and the vertex n+ 1 has been

relabelled with 0.

The Dandelion Code is reminiscent of Joyal's proof of the formula for the

number of labelled trees [6]. His argument rested on the fact that the number of
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linear orderings of a set is the same as the number of collections of cycles from that

set. An undirected tree, two of whose vertices are \special," should correspond to

a functional digraph found by taking the linear ordering of the vertices between

the two \special vertices" and using the corresponding collection of disjoint cycles.

The obvious bijection between linear orderings (of the vertices on the path from

one special vertex to the other) and collections of cycles is to consider the linear

ordering to be the second line of the 2-line notation for permutations, and the

collection of cycles to be the permutation. Although this is probably what Joyal

had in mind, it is somewhat unnatural in that it usually preserves very few of the

original edges in the tree.

The relationship between Joyal's proof and the Dandelion Code is that for our

purposes, the \special" vertices are always 1 and 0, and we are speci�c about the

bijection between linear orderings and collections of disjoint cycles. The bijection

we choose (namely, the one where 1 and 0 are ignored and the path between

them is broken into cycles according to the algorithm above) is more natural than

the obvious one because it preserves nearly all of the original edges of the tree.

E�gecio�glu and Remmel phrase this in terms of a weight-preserving property of the

bijection.

Essentially, the Dandelion Code is an implementation of Joyal's argument,

where we consider only functional digraphs where there is a loop at 0 and a loop

at 1, 1 is considered to be the largest vertex, and we use the algorithm of the fast

Dandelion Code and its inverse as the bijection between linear orderings and col-

lections of cycles. In Chapter 8 we discuss the relationship between the Dandelion

Code and the Happy Code, which indicates that the Happy Code is a di�erent

implementation of Joyal's argument.

Theorem 10 The fast algorithm above gives the Dandelion Code as de�ned in

Chapter 6.

Proof . We note that the tree surgery algorithm has n � 1 steps, whereas the

fast algorithm has an unclear number that is usually less than n� 1. However, in
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step i of the tree surgery method, if vertex n� i+1 is not on the path from 1 to 0,

then performing the tree surgery of pointing its edge at 1 does not create a cycle.

Thus, wn�i+1 = bsucc(n�i+1) will be the (n� i)
th entry in the code. This matches

the e�ect of the fast algorithm, which essentially starts with the na��ve code and

then changes the entries only of vertices on the path from 1 to 0.

For vertices that lie between 1 and 0 and do not have any inversions, the tree

surgery algorithm notes the cycle that has appeared and does the equivalent of

reverting to the original tree from the start of step i and switching the successors

of n � i + 1 and 1. Then, to get rid of the smaller cycle that this graph has, it

removes the new edge (n � i + 1) ! succ(1) and adds an edge (n � i + 1) ! 1

with weight succ(1). All of this amounts to exactly what the fast algorithm does.

Because the tree surgery algorithm changes the edges of the vertices from n down

to 2, the largest vertex on the current path from 1 to 0 is the one whose edge will

point initially back at 1 and create a cycle, though in fact what will happen is

that whatever was the current succ(1) is what gets put as the weight of the edge.

This corresponds to a cycle in the sense of permutations, and since this cycle is

removed from the path, the rest of the vertices in that cycle now keep their original

successors for the �nal code. ��



Chapter 8

Relationship between Codes

There is actually a close relationship between the Happy Code and the Dande-

lion Code.

Example: If we start with the tree 1 ! 6! 4! 9! 8! 3! 2! 5! 7! 0,

we found in x7.2 that its Dandelion Code was (5,2,9,7,4,3,8,6). If we reverse the

order of the vertices between 1 and 0, the new tree is

1! 7! 5! 2! 3! 8! 9! 4! 6! 0;

Note that the Dandelion Code of the tree with the reversed path from 1 to 0 is

not the reverse of the Dandelion Code of the original tree:

(7; 5; 2; 3; 8; 9; 4; 6) �! (752389)(46) �!

�
23456789

38624597

�
�!

�
23456789

38624597

�

However, the Happy Code for this new tree yields the Dandelion Code for the

original tree. The na��ve code is B7B3B8B6B2B0B5B9B4. The fast Happy Code

algorithm goes as follows:

112
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B7B3B8B6B2B0B5B9B4

?
B5B3B8B6B2B0b7B9B4

?
B2B3B8B6b5B0b7B9B4 �! B2B3B8B6b7B0b5B9B4

?
B3b5B8B6b7B0b2B9B4  � B3b2B8B6b7B0b5B9B4

?
B8b5b3B6b7B0b2B9B4 �! B8b5b2B6b7B0b3B9B4

?
B9b5b2B6b7B0b3b8B4

?
B4b5b2B6b7B0b3b8b9

?
B6b5b2b9b7B0b3b8b4  � B6b5b2b4b7B0b3b8b9

?
B0b5b2b9b7b6b3b8b4 �! B0b5b2b9b7b4b3b8b6

The subscripts give the Happy Code: (5,2,9,7,4,3,8,6), which is the same as the

Dandelion Code of the tree where the path from 1 to 0 was in the other order.

Theorem 11 If the order of the vertices on the path from 1 to 0 is reversed, the

Happy Code of the new tree will be the same as the Dandelion Code of the original

tree (and vice versa).

Proof . To understand how the Happy Code and the Dandelion Code are so

closely related, we note that both depend on the path from 1 to 0. Vertices occur-

ring elsewhere in the tree have the same e�ect on the code using either algorithm;
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if i is such a vertex then succ(i) will appear in the (i � 1)th position of both

the Dandelion Code and the Happy Code for both the tree and its path-reversed

modi�cation.

Recalling the tree surgery method for the Happy Code, we construct a similar

method to the faster algorithm of the Dandelion Code. First, we write out only

the path from 1 to 0. We know that as we move from left to right (from 1 to

0) along it, each vertex gets placed in a cycle, immediately following the largest

vertex already in a cycle. Thus we are comparing each vertex with the vertices to

its left in the path. We end a cycle just before a new largest vertex (among the

labels to its left). This is the reverse of the fast Dandelion Code, which ends a

cycle just after the largest vertex among the labels to its right.

Meanwhile, within the cycles, each new label is inserted after the largest label

in the cycle for the Happy Code. But the �rst element in the cycle is the largest

(by virtue of how we have split path into cycles), and the vertices are added to

it one at a time from left to right{always inserted after this largest label. The

e�ect is that of reversing the path order of the remaining vertices in the cycle.

The resulting cycle is exactly the cycle that arises from the Dandelion Code of the

path-reversed modi�cation of the original tree. ��

The Happy Code is another implementation of Joyal's almost-bijection. This

time the choice of bijection between linear orderings and sets of cycles is not as

natural because it changes more of the edges of the tree.



Chapter 9

Conclusion

9.1 The codes are distinct

An example su�ces to prove that these codes are di�erent from one another

and from the Pr�ufer Code.

Example: Consider the tree

0

4

?

5
@
@R

2

?

7
�

�	

6 3
@
@R

�
�	

1

?

whose Pr�ufer Code we calculated in x1.3.1 to be (6,2,4,2,4,4).

The Dandelion Code for the tree is found as follows:

(6; 2; 4) �! (6)(24) �!

�
246

426

�
�!

�
234567

422464

�

So the Dandelion Code for the tree is (4,2,2,4,6,4).

The Happy Code can be found by reversing the order of the path from 1 to 0

and �nding the Dandelion Code of the altered tree:
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0

6

?

2

?

4
@
@R

3
�

�	

5
@
@R

1

?

7
�

�	

This tree's Dandelion Code is (6,2,2,4,4,4):

(4; 2; 6) �! (426) �!

�
246

624

�
�!

�
234567

622444

�
:

Thus the Happy Code of our main example tree is (6,2,2,4,4,4).

The Blob Code takes a little more work:

0

4

?

5
@
@R

2

?

67
�



�
	 3

@
@R

�
�	

1

?

Code so far = (4)

It'll take a few more steps.

0

4

?

2

?

675
�



�
	

3

@
@R

�
�	

1

?

Code so far = (2,4)

0

4

?

2

?
675

�



�
	

3
�

�	1

?
Code so far = (4,2,4)
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0

4

?

2

?
675

�



�
	3

1

?

Code so far = (2,4,2,4)

0

4

?

2675
�



�
	3

1

?

Code so far = (4,2,4,2,4)

0

4

?

2675
�



�
	3 1

Blob Code = (6,4,2,4,2,4)

This is di�erent from the other codes.

So, to review, the tree we started with has the following codes:

Method Code

Blob (6,4,2,4,2,4)
Happy (6,2,2,4,4,4)

Dandelion (4,2,2,4,6,4)
Pr�ufer (6,2,4,2,4,4)

Thus, we conclude that the various codes are all distinct.

9.2 Clever weighting of edges

In [4], E�gecio�glu and Remmel use a six-variable weighted version of Cayley's

formula instead of the (n + 1)-variable version we have been using. They were

able to produce a bijection that counts descents and ascents. Speci�cally, where

we have given the edge i! j the weight bj, they have given it the weight xqitj if

the edge is a descent and ypisj if it is an ascent or loop.

It is possible to extend both their results and ours by clever weighting of edges.
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We examine the result of weighting edges as follows:

W (i! j) =

(
bj if i! j is not an ascent

aij if i! j is an ascent

Here, loops are considered not to be ascents.

Using these weights, we show an example for n = 4:

U 0
0 =

�
b0+b1+a12+a13+a14�b1 �a12 �a13 �a14

�b1 b0+b1+b2+a23+a24�b2 �a23 �a24
�b1 �b2 b0+b1+b2+b3+a34�b3 �a34
�b1 �b2 �b3 b0+b1+b2+b3+b4�b4

�

First we subtract row 3 from row 4, obtaining

U1 =

�
b0+b1+a12+a13+a14�b1 �a12 �a13 �a14

�b1 b0+b1+b2+a23+a24�b2 �a23 �a24
�b1 �b2 b0+b1+b2+b3+a34�b3 �a34
0 0 �b0�b1�b2�b3�a34 b0+b1+b2+b3+a34

�
:

Next we add column 4 to column 3.

U 0
1 =

�
b0+b1+a12+a13+a14�b1 �a12 �a13�a14 �a14

�b1 b0+b1+b2+a23+a24�b2 �a23�a24 �a24
�b1 �b2 b0+b1+b2+b3+a34�b3�a34 �a34
0 0 0 b0+b1+b2+b3+a34

�
:

The method is parallel to that of the Blob Code, only our weights are slightly

di�erent. We continue until we reach the �nal matrix, an upper-triangular matrix

whose ith diagonal entry is
P

i�1
k=0 bk +

P
n

k=i ai�1;k, except in row 1 where the di-

agonal entry is b0. This yields both algebraic and bijective proofs of a generalized

version of Cayley's formula, which we call the UCSD formula (since the inspiration

for it came from methods of E�gecio�glu and Remmel).

The UCSD formula for the sum of the weights of all possible trees is

X
�

W (� ) = det(U 0
n�1) = b0

nY
i=2

"
i�1X
k=0

bk +

nX
j=i

ai�1;j

#
:

A code is a term from this product, kept in the order of the columns from which it

came. Speci�cally, the set of codes is f(x1; x2 : : : ; xn)jx1 = b0; and for 2 � i � n;

xi = ai�1;j for some j > i� 1 or xi = bj for some j � i� 1g.

The advantage of this new weighting system is that the code reveals all ascents

and descents to and from each vertex. The ascending edges can be read directly
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from the subscripts of the a weights, while the descending indegree of any vertex j is

given by the number of occurrences of bj. Let IA(j) denote the ascending indegree

of j, ID(j) the descending indegree, OA(j) the ascending outdegree and OD(j) the

descending outdegree. The total indegree of j is the number of occurrences of

bj plus the number of times that j occurs as the second subscript of an a. The

descending outdegree of a vertex j 6= 0 is simply OD(j) = 1 �OA(j).

Example: If a tree turns out to have code (b0; a13; b2; b0; a45), then we know the

following:

Vertex IA ID OA OD

0 0 2 0 0

1 0 0 1 0
2 0 1 0 1
3 1 0 0 1
4 0 0 1 0
5 1 0 0 1

From the code we can thus also conclude not only that the edges 1! 3 and 4! 5

are in the tree, but that so is the edge 2! 0 (because 2 has descending outdegree

of 1, and 1 has indegree of zero; 2 must point at something less than 2 but it can't

be 1). All that remains is to �gure out the edges from 3 and 5. One must point at

2 and the other at 0 to use up all of our indegrees. By de�ning involutions as we

did for the original Blob Code, we could �nd it using the matrix method with the

above matrices. We can also use the inverse tree surgery algorithm from x4.2.

0

1 3
?

�



�
	2 5 4

The initial b0 in the code tells us that the blob points at 0. The next element in

the code, a13, indicates that when we remove 1 from the blob, its edge points at

3 and the blob stays where it is.

0

1

3
?

?

�



�
	2 5 4
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The next part of the code is b2. If 2 is removed from the blob, then the (nonex-

istent) path from 2 to 0 does not pass through the blob, so we remove the edge

blob! 0 and add edges blob! 2 and 2! 0.

0

1

3
?

?

�



�
	

2

?

5 4

The next weight in the code is b0. We remove 3 from the blob. The path from

0 to 0 does not go through the blob, so we remove the edge blob ! 2 and add

edges 3! 2 and blob! 0.

0

1

3
?

@
@R

�	

�



�
	2

?

5 4

The �nal piece of information from the code is a45. This automatically tells us

what the �nal edge is.

0

1

3
?

@
@R
2

?

5
�
�	

4

?

This weighted version of the Blob Code is just as easily calculated as the original

Blob Code, but displays more information.

We can also use the Dandelion Code to verify directly that the UCSD formula

holds. The right side of the equation, a product of sums of monomials, expands out

to a sum of terms of degree n. Each term is the weight of a happy functional digraph

consisting of the edges i! j whenever the ith indeterminate in the sequence is bj or
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akj for some k. The Dandelion Code gives a weight-preserving bijection between

this set of happy functional digraphs and the set of trees. Thus, the right side

of the equation must equal the left side. This is essentially the same proof that

E�gecio�glu and Remmel use for their six-variable version of the Cayley formula.

Using the Dandelion Code matrix method for an algebraic proof of this formula

is less straightforward than using the Blob Code matrix method.

9.3 Applications and more questions

All of our simple (non-weighted) codes have interesting features. The Happy

Code is less natural than the other two and probably can not be generalized to

display more information than the Pr�ufer Code. It is the hardest of the three

codes to get a mental handle on, because in the matrix method, we only apply the

bijective proof of the Matrix Tree Theorem to the original matrix. This drastically

complicates the proof that the matrix method and tree surgery method for this

code are equivalent. However, Lemma 4, required in that proof, is easy to state,

beautiful, and surprising.

The Dandelion Code is very e�ciently calculated, and allows us an easier way

to �nd the Happy Code. It implements Joyal's almost-bijective proof of Cayley's

formula in a beautiful and natural way. If thought of in the way suggested by

the fast algorithm for it (as E�gecio�glu and Remmel did), it preserves most of the

edges of the original tree. Furthermore, this bijection provides a direct proof of

the UCSD formula.

The simple Blob Code is interesting in that it elaborates on some of Orlin's

ideas and provides a bijection behind his manipulatoric proof of the formula for the

number of trees. Furthermore, it doesn't single out vertex 1 as being more special

than the others, whereas the other two codes require one (rather arbitrarily) to

examine the path from 1 to 0. Best of all, the matrix and tree surgery methods both

generalize easily to a weighted code that keeps track of all ascents and descents in

the tree.
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All of these codes share the property that they are consistent with the Matrix

Tree Theorem. They are natural in that we can undo them one step at a time, in

reverse order from the way they were found, simply by following the involutions

through in the other order. They also can be found by simpler, tree-surgical

bijections similar to that of Pr�ufer, yet the inverses of these methods are the

simple inverse operations of the formations of the codes. Meanwhile, there does

not seem to be any way to \matrixify" the Pr�ufer Code, and its inverse is decidedly

unnatural. In addition, our three codes lose none of the information encapsulated

in the Pr�ufer Code (the indegrees of each vertex; which vertices are leaves).

Furthermore, the Dandelion Code generalizes to forests (collections of rooted

trees) very nicely [10],[12]. The number of forests with n + 1 vertices, k of which

are roots, is k � (n + 1)n�k. Since the Matrix Tree Theorem also generalizes to

forests of k rooted trees (where k < n+ 1) using minors obtained by crossing out

k rows and columns, it is possible that the bijective proof by Chaiken [3] can lead

to extensions of the Blob and Happy Codes to forests as well. However, this is not

necessary. We can easily extend any of the three codes to forests of k trees with

roots �1;�2; : : : ;�k and non-root vertices k + 1; k + 2; : : : ; n + 1 by replacing b0

with b�1 + b�2 + � � � + b�k (and B0 with B�1 + � � � +B�k) whenever they appear

in the matrices. The result is immediate using the exact same methods, and the

tree surgery methods are not a�ected substantially by the change.

The codes themselves may not be useful for much yet. Although each of them

has some relationship with the idea of inversions, none actually count inversions.

(An inversion occurs whenever a vertex j > i appears on the path from i to 0.)

A future direction for research might be to attempt to �nd a code that is both

consistent with the Matrix Tree Theorem and able to enumerate the inversions of

the tree, because the total number of inversions in a tree, inv(� ), is of interest to

algebraic combinatorists. The Hilbert series of the space of diagonal harmonics

(when restricted to t=1), Hilbn(t; q)jt=1, is conjectured to be
P
qinv(�) where �

ranges over all trees with vertices 0; : : : ; n. Thus a statistic on one of the codes

that has the same distribution as inv(� ) might assist algebraic combinatorists in
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�nding a basis for the space of diagonal harmonics. Unfortunately, such a code is

elusive.

Another possible direction for future research is to examine the method of

the Happy Code when applied to the Blob Code's row and column operations.

Namely, if we use a placeholder � in the (0,0) position and only apply the Matrix

Tree Theorem to the original matrix, setting Bj = bj at the end, do we get a

di�erent code? If so, does it have any advantages over the codes we have already

found?

As noted in x1.5, there are many sequences of row and column operations that

can lead to an easily calculated determinant. Since the matrix involution method is

quite general, any of these should give a coding algorithm for trees. We know that

not all coding algorithms based on the structure of the tree correspond to matrix

methods. Naturally we are led to wonder whether there are always simple tree

surgical methods that correspond to the codes we �nd through matrices. The true

beauty of these results is that each code was de�ned through row operations on

the matrix before the corresponding tree surgical methods were discovered. Thus,

linear algebra gave birth to bijections who grew up and became independent proofs

in their own right.
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