Solution

Possible approach:
Convert hours to minutes for each customer (multiply by 60 .)
Figure out what each would owe under each plan, perhaps presenting the results in a table:

	Minutes	Plan A	Plan B	Plan C
Silent Sam	120	$\$ 44.00$	$\$ 3.60$	$\$ 22.00$
Chatty Cathy	3000	$\$ 44.00$	$\$ 90.00$	$\$ 142.00$
Mathy Mary	900	$\$ 44.00$	$\$ 27.00$	$\$ 22.00$

After working out these examples, it becomes clear (especially with the help of a graph) to see that for few minutes, Plan B is best. For many minutes, Plan A is best. And there is a zone in between for which Plan C is best.

One can use technology to purse the general question, but that requires knowing how to describe the plans with algebraic notation. If m is the number of minutes, and the equations are in dollars:

$$
\begin{aligned}
& \mathrm{A}=44 \\
& \mathrm{~B}=0.03 \mathrm{~m} \\
& \text { If } \mathrm{m} \leq 1800, \mathrm{C}=22 \\
& \text { If } \mathrm{m}>1800, \mathrm{C}=22+0.1(\mathrm{~m}-1800)
\end{aligned}
$$

Of course, the last equation is the trickiest to find:
($\mathrm{m}-1800$) represents the number of minutes beyond 1800.
Multiply that by 0.1 (ten cents), and add the base cost of $\$ 22$.
Here are three ways to find the break-even points:
\diamond Use trial and error with different numbers of minutes to figure out when Plan C becomes preferable to Plan B, and when Plan A becomes preferable to Plan C.
\diamond Use software to solve the equations graphically (see Tech Support)
\diamond Solve the two equations ("manually" or with the help of CAS):
$.03 \mathrm{~m}=22$ (break-even point for B and C) $22+0.1(\mathrm{~m}-1800)=44$ (break-even point for C and A).
The solutions are, respectively: 733 minutes (approximately), and 2,020 minutes. In hours: 12 hours 13 minutes (approximately), and 33 hours 40 minutes.

