SA ADARD TCMM OL A QUA DRAIC

Definition: A quadratic equation is said to be in standard form if it is in the form:

$$
a x^{2}+b x+c=0 .
$$

In Chapter 13 you learned several methods to solve quadratics in the case where $a=1$. If you divide all the terms of a quadratic equation in standard form by a, you can solve it with those methods.

Example: Solve $3 x^{2}+5 x-4=0$.
Divide both sides by 3 :

$$
\begin{aligned}
& x^{2}+\frac{5}{3} x-\frac{4}{3}=\frac{0}{3} \\
& x^{2}+\frac{5}{3} x-\frac{4}{3}=0 .
\end{aligned}
$$

Since $a=1$, the solutions are $H \pm \sqrt{-V}$. In this case:

$$
H=-b / 2=-5 / 6
$$

Find V by substituting H for x in the equation.

$$
\begin{aligned}
V & =\left(\frac{-5}{6}\right)^{2}+\left(\frac{5}{3}\right)\left(\frac{-5}{6}\right)-\frac{4}{3} \\
& =\frac{25}{36}-\frac{25}{18}-\frac{4}{3} \\
& =\frac{25}{36}-\frac{50}{36}-\frac{48}{36} \\
& =\frac{-73}{36}
\end{aligned}
$$

So the solutions are:

$$
-\frac{5}{6}+\sqrt{\frac{73}{36}} \text { or }-\frac{5}{6}-\sqrt{\frac{73}{36}}
$$

The two solutions can be written as one expression:

$$
-\frac{5}{6} \pm \sqrt{\frac{73}{36}}
$$

where the symbol \pm is read plus or minus. It is also possible to write it as a single fraction:

$$
-\frac{5}{6} \pm \sqrt{\frac{73}{36}}=-\frac{5}{6} \pm \frac{\sqrt{73}}{6}=\frac{-5 \pm \sqrt{73}}{6}
$$

Solve. (Hint: You may divide by a, then use any of the methods from Chapter 13.)

1. $2 x^{2}+4 x-8=0$
2. $-x^{2}+4 x+8=0$
3. $3 x^{2}+4 x-4=0$
4. $-3 x^{2}+8 x+8=0$

TINDNG HE X NHERGIS

You already know how to find the vertex of a quadratic function in standard form. In this section you will learn how to find the x-intercepts from the vertex.

The following figure shows the graph of the function $y=a x^{2}+b x+c$, which is a translation of $y=a x^{2}$, whose graph is also shown. The coordinates of the vertex are (H, V). D is the distance from the x-intercepts to the axis of symmetry. When $a=1$, we found that $D=\sqrt{-V}$. What is D in the general case?

The figure shows D and V on a parabola that was translated from $y=a x^{2}$. In this example, V was a negative number, and the translation was in a downward direction. The arrows representing D and V are also shown on the original parabola. (On $y=x^{2}$, the direction of the arrow for V was reversed. What is shown is actually the opposite of V. This is indicated by the label $-V$. Since V is negative, $-V$ is positive.)
5. Use the figure to explain why $-V=a D^{2}$.
6. Express D in terms of V and a.
7. This formula is different from the one we had found in the case where $a=1$. Explain why this formula works whether $a=1$ or $a \neq 1$.

STLME QUEDRUIC WIU HICNS

The x-intercepts, when they exist, are equal to $H \pm D$. It follows from the value of D found in the previous section that the solutions to the quadratic equation $a x^{2}+b x+c=0$ are given by the formula:

$$
H \pm \sqrt{-\frac{V}{a}}
$$

Therefore, one way to solve a quadratic equation in standard form is first to find H and V. In Lesson 2 you learned how to express H in terms of a and b. Then V can be found by substituting H into the equation.

Example: Solve $2 x^{2}+8 x-7=0$.

Solutions:

$$
H \pm \sqrt{-\frac{V}{a}}=-2 \pm \sqrt{-\frac{-15}{2}}=-2 \pm \sqrt{7.5}
$$

Solve.
8. $2 x^{2}+6 x-8=0$
9. $-x^{2}+6 x+8=0$
10. $3 x^{2}+6 x+1=0$
11. $-3 x^{2}+6 x+8=0$

As you know, $H=-b /(2 a)$. The following problem uses that fact to find a formula for V in terms of a, b, and c.
12. Substitute $-b /(2 a)$ into $a x^{2}+b x+c$ to find the y-coordinate of the vertex as a single fraction in terms of a, b, and c.

If you did problem 12 correctly, you should have found that:

$$
V=\frac{-b^{2}+4 a c}{4 a} .
$$

13. To find a formula for the solutions of the quadratic equation in standard form in terms of a, b, and c, substitute the expressions for H and V into the expression

$$
H \pm \sqrt{-\frac{V}{a}}
$$

If you did this correctly, you should have found that the solutions are:

$$
-\frac{b}{2 a} \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}
$$

14.5
14. Show that this simplifies to:

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This expression is the famous quadratic formula. It gives the solutions to a quadratic equation in standard form in terms of a, b, and c. You will find it useful to memorize it as follows: "The opposite of b, plus or minus the square root of b squared minus $4 a c$, all over 2a."
15. $2 x^{2}+6 x-4=0$
16. $-x^{2}+6 x+4=0$
17. $3 x^{2}+6 x-4=0$
18. $-3 x^{2}+7 x-4=0$
19. Feport What are all the methods you know for solving quadratic equations? Use examples.

Solve these equations. (If you use the quadratic formula, you are less likely to make mistakes if you calculate the quantity $b^{2}-4 a c$ first.)

BISCOVERY A TOUGH INEQUALITY

On Friday night when Mary and Martin walked into the G. Ale Bar, Ginger gave them a challenging inequality. "This stumps some calculus students," she said, "but I think you can figure it out."
20. Solve Ginger's inequality: $3<1 / x$. Check and explain your solution.

1PVIEM RECTANGLES

21. The length of a rectangle is 10 more than the width. Write a formula for:
a. the width in terms of the length;
b. the area in terms of the length;
c. the perimeter in terms of the width.
22. A rectangle has width $3 x+1$ and length $6 x+2$. Find the perimeter when the area is 200 .
