

1. How do you convert a fraction to a decimal number? Give examples.

When converting fractions to decimals, sometimes you get a terminating decimal like 3.4125 , and sometimes you get a repeating decimal, like $7.8191919 \ldots$. This last number is often written $7.8 \overline{19}$.

Problems 2 and 3 are easier if you work with lowest-term fractions.
2. Exploration For what fractions do you get a repeating decimal? Does it depend on the numerator or the denominator? (Hint: Pay attention to the prime factorization of the numerator and the denominator.)
3. Exploration For repeating decimals, is there a pattern to the number of digits in the repeating part? What is the longest possible repeating string for a given denominator? (Hint: Use long division rather than a calculator to explore this.)
4. Explain why the decimals obtained as a result of a division must repeat or terminate.
5. Explain why some calculators give a decimal that does not seem to repeat for 2/3: 0.6666666667.

WRIING DEGMALS AS RACIIONS

Example: 3.4125 can be converted to a fraction by multiplying it by 10^{4}, which gets rid of the decimal, and then dividing by 10^{4}, which gets us back to the original number.

$$
\frac{34,125}{10,000}
$$

6. Convert these decimals to fractions.
a. 6.0
b. 3.2
c. 0.015
d. 3.41

The case of repeating decimals is more difficult. Take $7.8 \overline{19}$. Clearly, it is greater than 7.81 and less than 7.82. So it is between 781/100 and 782/100.

To find a single fraction it is equal to, we can rewrite it as:
$7.80 \overline{19}$
$=7.8+0.0 \overline{19}$
$=7.8+0.019+0.00019+0.0000019+\ldots$
Observe that:

$$
\begin{gathered}
0.00019=0.019(0.01) \\
0.0000019=0.019(0.01)^{2}
\end{gathered}
$$

7. Write the next term in the sum as a decimal, and as a product of 0.019 and a power of 0.01 .

As you see, $7.8 \overline{19}$ is the sum of 7.8 and a geometric sequence with first term 0.019 and common ratio 0.01 . The sum of the first three terms of the geometric sequence can be written:

$$
S=0.019+0.019(0.01)+0.019(0.01)^{2}
$$

Multiply both sides by 0.01 :

$$
\begin{gathered}
S(0.01)=0.019(0.01)+0.019(0.01)^{2}+ \\
0.019(0.01)^{3}
\end{gathered}
$$

Subtract:

$$
S(1-0.01)=0.019-0.019(0.01)^{3}
$$

Solve:

$$
S=\frac{0.019-0.019(0.01)^{3}}{0.99}
$$

Multiplying numerator and denominator by 1000 :

$$
S=\frac{19-19(0.01)^{3}}{990}
$$

$$
\begin{aligned}
7.8 \overline{19} & =7.8+S \\
& =7.8+\frac{19-19(0.01)^{3}}{990} \\
& =\frac{7.8(990)+19-19(0.01)^{3}}{990}
\end{aligned}
$$

So

$$
\begin{aligned}
& =\frac{7741-19(0.01)^{3}}{990} \\
& =\frac{7741-0.000019}{990}
\end{aligned}
$$

The sum is very close to $7741 / 990$.
8. Use the multiply-subtract-solve technique to add:
a. the first 4 terms;
b. the first 5 terms.
9. The numerator differs from 7741 by $19(0.01)^{n}$ if we add up the first n terms. Explain.

If we use large values for n, we find that the sum can get as close to $7741 / 990$ as we want. (Even with fairly small values of n, the sum of the first n terms differs from 7741/990 by a very small number.) Mathematicians say that the whole infinite sum converges to 7741/990, and they agree that we can write an equality:

$$
7.8 \overline{19}=7741 / 990
$$

10. Check that this equality is correct, by converting the fraction back to a decimal.

A quick way to find the fraction is to use the multiply-subtract-solve technique on the decimal itself:

$$
\begin{aligned}
R & =7.8191919 \ldots \\
0.01 R & =0.0781919 \ldots
\end{aligned}
$$

Subtract:

$$
\begin{gathered}
R-0.01 R=7.8191919 \ldots-0.0781919 \ldots \\
(1-0.01) R=7.819-0.078
\end{gathered}
$$

(Notice that the infinite sequence of 19 s disappeared.)

$$
\begin{gathered}
0.99 R=7.741 \\
R=\frac{7.741}{0.99}=\frac{7741}{990}
\end{gathered}
$$

11. Convert to a fraction.
a. $0 . \overline{65}$
b. $4 . \overline{321}$

Definition: A rational number is a number that can be written as a fraction having an integer numerator and denominator.

Examples: 7, 0.5, and -0.66666... are rational numbers, because they can be written as $7 / 1,1 / 2$, and $-2 / 3$.

Show that the following numbers are rational.
12. a. 0.3
b. 0.3333...
13. a. 0.142857
b. $0 . \overline{142857}$
14. a. 0.0909090 ...
b. 0.9090909 ...
15. a. 0.1111111...
b. $0.2222222 \ldots$
16. Mathematicians believe that $0.99999 \ldots=1$. Explain why.

