

The figure shows five squares. For each one, find

- 1. its area;
- 2. its side, written twice: as the square root of the area, and as a decimal number.

The sides of the larger squares are multiples of the side of the smallest square. For example, square (b) has a side that is equal to two times the side of square (a). You can write,

$$\sqrt{8} = \sqrt{2} + \sqrt{2} = 2\sqrt{2}.$$

Note that $2\sqrt{2}$ means 2 times $\sqrt{2}$, just as 2x means 2 times x. You can check the equation with a calculator.

$$\sqrt{8} = 2.828427125...$$

 $2\sqrt{2} = 2.828427125...$

7. True or False? Use a sketch on dot paper to explain your answers.
a. √2 + √2 = √4

based on the figure. Check your equations

b. $4\sqrt{2} = \sqrt{8}$

on a calculator.

8. Solution Is $\sqrt{2+2} = \sqrt{4}$? Explain.

RECTANGLES AND ROOTS

In this section do not use decimal approximations.

9. The figure shows three rectangles. For each one, write *length* \cdot *width* = *area*.

- a. What is the side of a square having the same area?
- b. Sketch this square on dot paper.

Some multiplications involving square roots can be modeled by geoboard rectangles. For example, $2\sqrt{5} \cdot 3\sqrt{5}$ is shown in this figure.

- 11. Find the product of $2\sqrt{5} \cdot 3\sqrt{5}$ by finding the area of the rectangle.
- 12. Multiply.

a.	$2\sqrt{2} \cdot 3\sqrt{2}$	b. $3\sqrt{2} \cdot 4\sqrt{2}$
c.	$4\sqrt{2} \cdot 5\sqrt{2}$	d. $\sqrt{2} \cdot 2\sqrt{2}$

13. Multiply.

a.	$\sqrt{2} \cdot \sqrt{18}$	b.	$\sqrt{18}$ ·	$\sqrt{50}$
c.	$\sqrt{50} \cdot \sqrt{8}$	d.	$\sqrt{8} \cdot \sqrt{2}$	32

Using the fact that $\sqrt{a} \cdot \sqrt{a} = a$ makes it easy to multiply some quantities involving radicals. For example:

$$6\sqrt{5} \cdot 2\sqrt{5} = 6 \cdot 2 \cdot \sqrt{5} \cdot \sqrt{5} = 12 \cdot 5 = 60$$

- **14.** Multiply. a. $5\sqrt{2} \cdot \sqrt{2}$ b. $5\sqrt{2} \cdot 4\sqrt{2}$ c. $3\sqrt{5} \cdot \sqrt{5}$
- **15.** Explain your answers by using a sketch of a geoboard rectangle.
 - a. Is $\sqrt{4} \cdot \sqrt{2} = \sqrt{8}$?
 - b. Is $\sqrt{5} \cdot \sqrt{20} = \sqrt{100}$?

MULTIPLYING SQUARE ROOTS

Is it always true that $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$? We cannot answer this question in general by making geoboard rectangles. A multiplication like $\sqrt{2} \cdot \sqrt{5}$ cannot be shown that way because it is not possible to find those lengths on the geoboard at a right angle to each other.

- 16. Guess how to write $\sqrt{2} \cdot \sqrt{5}$ as a square root. Check your guess with a calculator.
- 17. Generalization If a and b are positive,
 a. give a rule for multiplying √a · √b;
 b. explain how to multiply c√a · d√b.
- **18.** Multiply. a. $3\sqrt{5} \cdot 2\sqrt{6}$ b. $(2\sqrt{11})(-11\sqrt{2})$

SIMPLE RADICAL FORM

Definitions: The square root symbol $(\sqrt{})$ is called a *radical sign*, or simply *radical*. A *radical expression* is an expression that includes a radical.

Examples:

$$\sqrt{3}, 4\sqrt{7}, 1 + \sqrt{6}, \text{ or } \frac{\sqrt{2}}{x}$$

- **19.** Write each of these in at least two ways as the product of two radical expressions.
 - a. $\sqrt{70}$ b. $\sqrt{63}$ c. $6\sqrt{80}$ d. $24\sqrt{105}$

20. Write each of these as the product of two radicals, one of which is the square root of a perfect square.

-			
a.	√75	b.	$\sqrt{45}$
c.	$\sqrt{98}$	d.	$\sqrt{28}$

Definition: Writing the square root of a whole number as a product of a whole number and the square root of a smallest possible whole number is called putting it in *simple radical form*.

For example, in simple radical form, $\sqrt{50}$ is $5\sqrt{2}$ $\sqrt{20}$ is $2\sqrt{5}$.

(Note that when using a calculator to find an approximate value, simple radical form is not simpler!)

21. Write in simple radical form.

a. √75	b. √45
c. √98	d. $\sqrt{28}$

GEOBOARD LENGTHS

Since 50 is a little more than 49, $\sqrt{50}$ is a little more than 7. A calculator confirms this: $\sqrt{50} = 7.07...$

22. Estimate the following numbers, and check your answer on a calculator.
a. √65 b. √85

These numbers may help you with the next problem.

- 23. Exploration There are 19 geoboard line segments that start at the origin and have length 5, 10, $\sqrt{50}$, $\sqrt{65}$, or $\sqrt{85}$. Find them, and mark their endpoints on dot paper.
- **24.** If you know two sides of a geoboard triangle are of length 5, what are the possibilities for length for the third side?
- **25.** Repeat problem 24 for the following side lengths.

a. 10	b. $\sqrt{50}$	
c. √65	d. $\sqrt{85}$	

