

The figure shows five squares. For each one, find

1. its area;
2. its side, written twice: as the square root of the area, and as a decimal number.

The sides of the larger squares are multiples of the side of the smallest square. For example, square (b) has a side that is equal to two times the side of square (a). You can write,

$$
\sqrt{8}=\sqrt{2}+\sqrt{2}=2 \sqrt{2}
$$

Note that $2 \sqrt{2}$ means 2 times $\sqrt{2}$, just as $2 x$ means 2 times x. You can check the equation with a calculator.

$$
\begin{aligned}
& \sqrt{8}=2.828427125 \ldots \\
& 2 \sqrt{2}=2.828427125 \ldots
\end{aligned}
$$

3. Write equations about the sides of squares (c), (d), and (e). Check their correctness with a calculator.

The figure shows three squares. For each one, find
4. its area;
5. its side, written twice: as the square root of the area, and as a decimal number.
6. Write equations involving square roots based on the figure. Check your equations on a calculator.
7. True or False? Use a sketch on dot paper to explain your answers.
a. $\sqrt{2}+\sqrt{2}=\sqrt{4}$
b. $4 \sqrt{2}=\sqrt{8}$
8. Is $\sqrt{2+2}=\sqrt{4}$? Explain.

In this section do not use decimal approximations.

9. The figure shows three rectangles. For each one, write length \cdot width $=$ area .

10. For each rectangle above:
a. What is the side of a square having the same area?
b. Sketch this square on dot paper.

Some multiplications involving square roots can be modeled by geoboard rectangles. For example, $2 \sqrt{5} \cdot 3 \sqrt{5}$ is shown in this figure.

11. Find the product of $2 \sqrt{5} \cdot 3 \sqrt{5}$ by finding the area of the rectangle.
12. Multiply.
a. $2 \sqrt{2} \cdot 3 \sqrt{2}$
b. $3 \sqrt{2} \cdot 4 \sqrt{2}$
c. $4 \sqrt{2} \cdot 5 \sqrt{2}$
d. $\sqrt{2} \cdot 2 \sqrt{2}$
13. Multiply.
a. $\sqrt{2} \cdot \sqrt{18}$
b. $\sqrt{18} \cdot \sqrt{50}$
c. $\sqrt{50} \cdot \sqrt{8}$
d. $\sqrt{8} \cdot \sqrt{32}$

Using the fact that $\sqrt{a} \cdot \sqrt{a}=a$ makes it easy to multiply some quantities involving radicals. For example:

$$
6 \sqrt{5} \cdot 2 \sqrt{5}=6 \cdot 2 \cdot \sqrt{5} \cdot \sqrt{5}=12 \cdot 5=60
$$

14. Multiply.
a. $5 \sqrt{2} \cdot \sqrt{2}$
b. $5 \sqrt{2} \cdot 4 \sqrt{2}$
c. $3 \sqrt{5} \cdot \sqrt{5}$
15. Explain your answers by using a sketch of a geoboard rectangle.
a. Is $\sqrt{4} \cdot \sqrt{2}=\sqrt{8}$?
b. Is $\sqrt{5} \cdot \sqrt{20}=\sqrt{100}$?

Is it always true that $\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}$? We cannot answer this question in general by making geoboard rectangles. A multiplication like $\sqrt{2} \cdot \sqrt{5}$ cannot be shown that way because it is not possible to find those lengths on the geoboard at a right angle to each other.
16. Guess how to write $\sqrt{2} \cdot \sqrt{5}$ as a square root. Check your guess with a calculator.
17. Ceneralizafon If a and b are positive, a. give a rule for multiplying $\sqrt{a} \cdot \sqrt{b}$;
b. explain how to multiply $c \sqrt{a} \cdot d \sqrt{b}$.
18. Multiply.
a. $3 \sqrt{5} \cdot 2 \sqrt{6}$
b. $(2 \sqrt{11})(-11 \sqrt{2})$

Definitions: The square root symbol $(\sqrt{ })$ is called a radical sign, or simply radical. A radical expression is an expression that includes a radical.

Examples:

$$
\sqrt{3}, 4 \sqrt{7}, 1+\sqrt{6}, \text { or } \frac{\sqrt{2}}{x}
$$

19. Write each of these in at least two ways as the product of two radical expressions.
a. $\sqrt{70}$
b. $\sqrt{63}$
c. $6 \sqrt{80}$
d. $24 \sqrt{105}$
20. Write each of these as the product of two radicals, one of which is the square root of a perfect square.
a. $\sqrt{75}$
b. $\sqrt{45}$
c. $\sqrt{98}$
d. $\sqrt{28}$

Definition: Writing the square root of a whole number as a product of a whole number and the square root of a smallest possible whole number is called putting it in simple radical form.

For example, in simple radical form, $\sqrt{50}$ is $5 \sqrt{2} \quad \sqrt{20}$ is $2 \sqrt{5}$.
(Note that when using a calculator to find an approximate value, simple radical form is not simpler!)
21. Write in simple radical form.
a. $\sqrt{75}$
b. $\sqrt{45}$
c. $\sqrt{98}$
d. $\sqrt{28}$

CFOBOARD INGTIS

Since 50 is a little more than $49, \sqrt{50}$ is a little more than 7. A calculator confirms this:
$\sqrt{50}=7.07 \ldots$
22. Estimate the following numbers, and check your answer on a calculator.
a. $\sqrt{65}$
b. $\sqrt{85}$

These numbers may help you with the next problem.
23. Exploration There are 19 geoboard line segments that start at the origin and have length $5,10, \sqrt{50}, \sqrt{65}$, or $\sqrt{85}$. Find them, and mark their endpoints on dot paper.
24. If you know two sides of a geoboard triangle are of length 5, what are the possibilities for length for the third side?
25. Repeat problem 24 for the following side lengths.
a. 10
b. $\sqrt{50}$
c. $\sqrt{65}$
d. $\sqrt{85}$

