

5. Find a number for $\sqrt{5}$. Write it down. Now clear your calculator, enter the number, and use the x^2 key. What answer did you get? Compare your answer with other students' answers. Explain.

DISTANCE ON THE GEOBOARD

To find the distance between two points on the geoboard, *as the crow flies*, you can use the following strategy.

- Make a square that has the two points as consecutive vertices.
- Find the area of the square.
- Find the side of the square.

In problems 7-9, express your answers two ways: as a square root, and as a decimal approximation (unless the answer is a whole number).

area of a square that has that number for a side. For example, the square of 4 is 16, because a square having side 4 has area 16.

SOUARE ROOTS

As you know, the square of a number is the

- 1. a. What is the area of a square having side 9?
 - b. What is the side of a square having area 9?
- 2. a. What is the area of a square having side 10?
 - b. What is the side of a square having area 10?

You can answer question 2b with the help of a calculator, by using trial and error. Or, you may answer it by using the $\sqrt{2}$ key.

Definition: The *square root* of a number is the side of a square that has that number for area.

For example, the square root of 4 is 2, because a square having area 4 has side 2.

- **3.** a. What is the square of 11?
 - b. What is the square root of 11?

The square root of 11 is written $\sqrt{11}$. The number given by a calculator is an approximation of the exact value. Many calculators have an $\boxed{x^2}$ key.

7.12

Example: Find the distance between (1, 0) and (0, 1).

<									1
*	鲞	*		*	*	*	12	*	and the second
۲	*	6	dan secondaria	4	ø	*	ė	*	I Harrison Martingan
*	*	ŵ	(i)	۲	ŵ	-	۰	*	
*	*	¢	4	*	\$	*		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ŵ	0	*	And Income.	4	45	*	*	\$	*
*	\$	ŵ.	on Round	*	*	.		۵	۲
					~~~~				
*	ŵ	\$	r tooris difference	*	4	¢	ii;	\$	
Å	*	\$\$	- 11 March	*	÷	*	ŵ	*	*
*	>	*	or a state of the second	\$	Ś	۲	*	۵	æ
$\checkmark$	*		and and the second	*	10	*	*	۲	۲

The area of the square is 2, so the distance between the two points is  $\sqrt{2}$ , or 1.41...

- 7. Find the distance between:
  - a. (4, 3) and (6, 7);
  - b. (4, 6) and (6, 4);
  - c. (4, 5) and (4, 8).
- 8. Find the distance between the origin and (3, 1).

- 9. Find the distance between (5, 5) and (8, 9).
- **10.** a. Find 12 geoboard pegs that are at a distance 5 from (5, 5). Connect them with a rubber band. Sketch the figure.
  - b. Explain why someone might call that figure a *geoboard circle*.
- **11.** How many geoboard pegs are there whose distance from (5, 5) is
  - a. greater than 5?
  - b. less than 5?
- **12.** Choose a peg outside the *circle* and find its distance from (5, 5)
  - 13. Find all the geoboard pegs whose distances from (4, 3) and (6, 7) are equal. Connect them with a rubber band. Sketch.
  - **14.** What are the distances between the pegs you found in problem 13 and (4, 3) or (6, 7)?
  - **15.** Generalization Describe a method for finding the distance between the origin and a point with coordinates (x, y). Use a sketch and algebraic notation.

_____

## DISCOVERY) SUMS OF PERFECT SQUARES

- 16. Any whole number can be written as a sum of perfect squares. Write each whole number from 1 to 25 as a sum of squares, using *as few squares as possible* for each one. (For example,  $3^2 + 1^2$  is a better answer for 10 than  $2^2 + 2^2 + 1^2 + 1^2$ .)

### DISCOVERY) SUMS OF POWERS

- 18. Write every whole number from 1 to 30 as a sum of powers of 2. Each power of 2 cannot be used more than once for each number. Do you think this could be done with very large numbers? Try it for 100.
- 19. Write every whole number from 1 to 30 as a sum of powers of 3 and their opposites. Each power can appear only once for each number. Do you think this could be done with very large numbers? Try it for 100.