rervinixym

SOURTIROE 5

As you know, the square of a number is the area of a square that has that number for a side. For example, the square of 4 is 16 , because a square having side 4 has area 16.

1. a. What is the area of a square having side 9 ?
b. What is the side of a square having area 9 ?
2. a. What is the area of a square having side 10 ?
b. What is the side of a square having area 10 ?

You can answer question $2 b$ with the help of a calculator, by using trial and error. Or, you may answer it by using the $\sqrt{ }$ key.

Definition: The square root of a number is the side of a square that has that number for area.

For example, the square root of 4 is 2 , because a square having area 4 has side 2 .
3. a. What is the square of 11 ?
b. What is the square root of 11 ?

The square root of 11 is written $\sqrt{11}$. The number given by a calculator is an approximation of the exact value. Many calculators have an x^{2} key.
4. Use the x^{2} key to calculate the square of 8.76 . Write it down. Clear your calculator. Now use the $\sqrt{ }$ key to find the square root of the number. What answer did you get? Explain why this is so.
5. Find a number for $\sqrt{5}$. Write it down. Now clear your calculator, enter the number, and use the x^{2} key. What answer did you get? Compare your answer with other students' answers. Explain.
6. Which number has more digits, $\sqrt{10.3041}$ or $\sqrt{2}$? Make a prediction and check it with your calculator. Explain your answer.

To find the distance between two points on the geoboard, as the crow flies, you can use the following strategy.

- Make a square that has the two points as consecutive vertices.
- Find the area of the square.
- Find the side of the square.

In problems 7-9, express your answers two ways: as a square root, and as a decimal approximation (unless the answer is a whole number).

Example: Find the distance between $(1,0)$

The area of the square is 2 , so the distance between the two points is $\sqrt{2}$, or $1.41 \ldots$
7. Find the distance between:
a. $(4,3)$ and $(6,7)$;
b. $(4,6)$ and $(6,4)$;
c. $(4,5)$ and $(4,8)$.
8. Find the distance between the origin and $(3,1)$.
9. Find the distance between $(5,5)$ and $(8,9)$.
10. a. Find 12 geoboard pegs that are at a distance 5 from $(5,5)$. Connect them with a rubber band. Sketch the figure.
b. Explain why someone might call that figure a geoboard circle.
11. How many geoboard pegs are there whose distance from $(5,5)$ is
a. greater than 5 ?
b. less than 5 ?
12. Choose a peg outside the circle and find its tistance from $(5,5)$
13. Find all the geoboard pegs whose distances from $(4,3)$ and $(6,7)$ are equal. Connect them with a rubber band. Sketch.
14. What are the distances between the pegs you found in problem 13 and $(4,3)$ or $(6,7)$?
15. Generalization Describe a method for finding the distance between the origin and a point with coordinates (x, y). Use a sketch and algebraic notation.

DISCOVERY sUMS OF PERFECT SQUARES

16. Any whole number can be written as a sum of perfect squares. Write each whole number from 1 to 25 as a sum of squares, using as few squares as possible for each one. (For example, $3^{2}+1^{2}$ is a better answer for 10 than $2^{2}+2^{2}+1^{2}+1^{2}$.)
17. You should have been able to write every number in problem 16 as a sum of four or fewer perfect squares. Do you think this would remain possible for large numbers? For very large numbers? Experiment with a few large numbers, such as 123 , or 4321.

DISCOVERY SUMS OF POWERS

18. Write every whole number from 1 to 30 as a sum of powers of 2 . Each power of 2 cannot be used more than once for each number Do you think this could be done with very large numbers? Try it for 100
19. Write every whole number from 1 to 30 as a sum of powers of 3 and their opposites. Each power can appear only once for each number. Do you think this could be done with very large numbers? Try it for 100 .
