nuyberex

The figure shows a mod clock, which is a special function machine. For any positive whole number input, it will output a number between 0 and 4. For example:

Input	Output
1	1
9	4
13	3
25	0
77	2

Input	Output
5	0
12	2
17	2
26	1
100	0

1. What would be the output of the mod clock for the following inputs? Explain.
a. 1998
b. 1899
c. 9981

Definition: $a \oplus b$ is the output from the mod clock for the input $a+b \cdot a \otimes b$ is the output for the input $a b$.
Example: $3 \oplus 2=0$, and $3 \otimes 2=1$
2. Make a table for each of \oplus and \otimes.
3. Ceneralzation The clock above is a mod 5 clock. Find ways to predict the output of $\bmod 10, \bmod 2, \bmod 9$, and $\bmod 3$ clocks.

miroters

Definition: A group is a set of elements, together with an operation that satisfies the following rules.

- closure: using the operation on two elements of the group yields an element of the group.
- associative law: $(a b) c=a(b c)$.
- identity element: one of the elements, e, is such that $a e=e a=a$, for any element a in the group.
- inverse element: every element a has an inverse a^{\prime} such that $a a^{\prime}=a^{\prime} a=e$

Some groups are commutative ($a b=b a$) and some are not.

For 4-7 assume the associative law holds.
4. a. Show that the set $\{0,1,2,3,4\}$ together with the operation \oplus is a group.
b. Show that $\{0,1,2,3,4\}$ with \otimes is not a group.
c. Show that $\{1,2,3,4\}$ with \otimes is a group.
5. Is the set of the integers a group with the following operations?
a. addition
b. multiplication
6. Show that the set of rational numbers (positive and negative fractions and zero) together with multiplication is not a group. By removing one element, it can be made into a group. Which element? Explain.
7. Think about a mod 4 clock, with the numbers $\{0,1,2,3\}$. Is it a group for \oplus ? For \otimes ? Can it be made into one by removing an element?
8. Report Give examples of groups. For each, give the set and operation. Explain how they satisfy the rules. Include finite, infinite, commutative, and noncommutative groups.

