

## You vil need

graphing calculator
(optional)
graph paper


1. On the same axes, graph $y=x-1$ and $y=0.25 x+2$.

Your graph should look like the one below. The three points that are marked and labeled with their coordinates are all on the part of the graph of $y=x-1$ that is below the graph of $y=0.25 x+2$.

2. Find the coordinates of three points on the part of the line $y=x-1$ that is above the graph of $y=0.25 x+2$.
3. Find the coordinates of the point where the two lines cross.
4. If $x=100$,
a. which graph is above, $y=x-1$ or $y=0.25 x+2$ ?
b. what is the value of $0.25 x+2$ ?
c. what is the value of $x-1$ ?
5. If $x=-100$,
a. which graph is above, $y=x-1$ or $y=0.25 x+2$ ?
b. what is the value of $0.25 x+2$ ?
c. what is the value of $x-1$ ?
6. Describe all the values of $x$ for which the graph of $y=x-1$
a. is above the graph of $y=0.25 x+2$.
b. is below the graph of $y=0.25 x+2$.
7. Describe all the values of $x$ that satisfy each equation or inequality.
a. $0.25 x+2=x-1$
b. $0.25 x+2>x-1$
c. $0.25 x+2<x-1$

## 

8. Using trial and error, find three values of $x$ that satisfy each inequality.
a. $2 x<3 x+1$
b. $2 x>3 x+1$

It is often easy to find a few values of $x$ that satisfy an inequality. It is harder to find all the values, that is, to solve the inequality. You have solved equations and inequalities using trial and error, the cover-up method, tables, and the Lab Gear. Another method is to use graphs.
9. Graph $y=2 x$ and $y=3 x+1$ on the same pair of axes. Use the graphs to solve the two inequalities in problem 8 . Remember that even though the graph shows values of both $x$ and $y$, the original inequalities involved only the variable $x$. Your answers should involve only $x$.
10. Graph each pair of functions on graph paper. Use a separate grid for each pair.
a. $y=2 x-10$ and $y=5 x-1$
b. $y=2 x+10$ and $y=5 x-2$
c. $y=2 x-10$ and $y=5 x-2$
d. $y=x^{2}$ and $y=4 x-4$
11. Use your graphs from problem 10 to find the values of $x$ that make these equations true.
a. $2 x-10=5 x-1$
b. $2 x+10=5 x-2$
c. $2 x-10=5 x-2$
d. $x^{2}=4 x-4$
12. Summary Write a paragraph explaining how you can use graphs to help solve equations and inequalities. Illustrate by
showing how you would use your method to solve these equations and inequalities.
a. $-2 x+1>3 x-4$
b. $2 x-1>-3 x+4$
c. $3 x+4=-2 x-6$
d. $x^{2}=x+2$

## 

Use the techniques you have learned to solve these equations and inequalities. You can use trial and error, the cover-up method, tables, graphs, or the Lab Gear. Show your work.
13. $6 x+1 \leq-3 x+7$
14. $2 x+32=6 x+28$
15. $4(x+5)=4 x+20$
16. $-3+m<-m-3$
17. $\frac{5 x+3}{4}-6=1$
18. $x^{2}=6-x$
19. $\frac{x}{x+1}=1$
20. $\frac{x+5}{2}+x=19$

## 

## REVITM SUBSTITUTION

For each problem, write a simple expression that shows the relationship between $\Delta$ and $\rangle$. (Hint: If you cannot find the relationship by using algebra, make a table of values of $\Delta$ and $\nabla$ that make the expressions true, and find a pattern in the table.) Show your work.
21. $\Delta-\vartheta=\Delta$
22. $\Delta+2=\Delta+\Delta+\Delta$
23. $\Delta+\Delta+\Delta+\rangle=0$
24. $\diamond-\Delta+\diamond-\Delta=0$
25. $\Delta+\Delta=0+0$
26. $\rangle+\Delta+\Delta+\diamond=4$

## REVITV PREVIEY DIVISION AND THE DISTRIBUTIVE LAW

To divide a polynomial by a monomial, you can use the multiplication table format. For example, here is the setup to divide $10 x^{2}-5 x$ by 5 .


Ask yourself: What times $5=10 x^{2}$ ? and what times $5=-5 x$ ? Write the answers across the top of the table: $2 x^{2}-x$.

Divide.
27. $\frac{10 x^{2}-5 x}{x}$
28. $\frac{10 x^{2}-5 x}{5 x}$

If the denominator does not divide every term of the numerator, you will still have fractions in the answer. For example:

$$
\frac{10 x^{2}-5 x}{2}=5 x^{2}-\frac{5 x}{2}
$$

Divide.
29. $\frac{10 x^{2}-5 x}{10}$
30. $\frac{10 x^{2}-5 x}{x^{2}}$
31. $\frac{10 x^{2}-5 x}{3}$

## DISCOVITY WEIGHTED AVERAGES

Mr. Cody counts the quiz average (Q) in his class three times as much as the test average (T). That is, he uses the formula:

$$
\frac{3 Q+T}{4}
$$

(This is called a weighted average, because he weights the quizzes three times as much.)

Mr. Fletcher counts the test average twice as much as the quiz average. He uses the formula:

$$
\frac{Q+2 T}{3}
$$

## Oliver's grades:

Quizzes: 7580859570
Tests: 9510080

## Connie's grades:

Quizzes: 9598948890
Tests: 808095
32. Which teacher would Oliver prefer to have?
33. Which teacher would Connie prefer to have?
34. Oliver and Connie are both in Mr. Dodge's class. He gives students an A who have an average of 90 or better. If possible, show how Mr. Dodge can weight the tests and quizzes so that
a. Oliver has an A average;
b. Connie has an A average;
c. both Connie and Oliver have an A average.

