Definitions: A *sequence* is an ordered list of numbers, called *terms*. (Notice that this is a new use of the word *term*.) Terms are often indicated with subscripted variables, such as t_1 , t_2 , or t_n .

Sequences

ESSON

GRAPHS OF SEQUENCES

Definition: The *natural numbers* are the numbers we count with: 1, 2, 3, 4, ...

The natural numbers are the easiest sequence of numbers to write using a variable. The first natural number is 1, the second natural number is 2, and so on; $t_1 = 1$, $t_2 = 2$, ... The n^{th} natural number is *n*, so $t_n = n$. The graph shows the sequence of natural numbers.

1. Graph the first few terms of the sequence below. Does it make sense to connect the dots? Explain.

n	1	2	3	4	•••	п
t _n	2	5	8	11		3n – 1

2. Make a table, and graph the first few terms of the sequence whose n^{th} term is $t_n = 3n + 1$. Compare your graph with the one you drew in problem 1. How are they the same? How are they different?

3. You may remember this sequence.

n	1	2	3	4	•••	n
t _n	1	3	6	10	•••	?

- a. What is the 6th term?
- b. \bigcirc What is the n^{th} term?
- c. Graph the first few terms. Is your graph a straight line?

GETTING EVEN

- 4. If 2 is the first even number, 4 the second, and so on, what is the millionth even number? In terms of *n*, what is the *n*th even number?
- 5. Graph the first few terms of the sequence of even numbers. Is your graph a straight line?

n	1	2	3		?	n
t _n	2	6	?	•••	42	?

- 6. The *n*th term in the above sequence is the *sum of the first n even numbers*.
 - a. What is t_5 ?
 - b. Which term has a value of 42?
 - c. Graph the first few terms. Is your graph a straight line?
 - d. \bigcirc In terms of *n*, what is the *n*th term of this sequence?

THAT'S ODD!

7. If 1 is the first odd number, 3 the second, 5 the third, what is the one-hundredth odd number?

- 8. a. In terms of n, what is the n^{th} odd number?
 - b. Graph the first few terms in the sequence of odd numbers.

- 9. a. Look at the figure. How many unit triangles are in the first row? The second? The third? (Count triangles whether they point up or down.)
 - b. If the triangle were extended indefinitely, how many unit triangles would there be in the n^{th} row?
- **10.** a. How many unit triangles are there altogether in the first two rows? The first three rows?
 - b. How many unit triangles are in the first *n* rows?
- **11.** What is the sum of the first two odd numbers? The first three?
- **12.** a. What is the sum of the first *n* odd numbers?
 - b. Graph the first few terms in the sequence of sums of odd numbers.

ARITHMETIC SEQUENCES

Definition: In an *arithmetic sequence*, the difference between consecutive terms is always the same. It is called the *common difference*.

Examples: These are arithmetic sequences. 2, 7, 12, 17, 22 (The common difference is 5.) 5, 8, 11, 14, 17, 20, 23, 26, 29, 32 (The common difference is 3.)

- These are not arithmetic sequences.
- 3, 9, 27, 81
- 1, -1, 1, -1, 1, -1
- 4, 9, 16, 25, 49
- **13.** Which of these are arithmetic sequences? For those that are, what is the common difference?
 - a. 2, 6, 8, 12, 16, 20
 - b. 3, 6, 3, 7, 3, 8
 - c. 19, 13, 7, 1, -5, ...
 - d. the sequence of even numbers
 - e. the sequence of odd numbers
 - f. 2, 2 + 9, 2 + 2 \cdot 9, 2 + 3 \cdot 9, 2 + 4 \cdot 9
- **14.** Make up an arithmetic sequence for another student.
- **15.** Answer these questions about a classmate's sequence.
 - a. Is it really an arithmetic sequence?
 - b. What is the common difference?
 - c. \bigcirc In terms of *n*, what is the *n*th term?
- 16. \bigcirc For each arithmetic sequence, find the common difference, and write the n^{th} term in terms of *n*.
 - a. 2, 7, 12, 22, ...
 - b. $2 + 1 \cdot 5, 2 + 2 \cdot 5, 2 + 3 \cdot 5, \dots$
 - c. $2, 2 + 1 \cdot 5, 2 + 2 \cdot 5, 2 + 3 \cdot 5, \dots$
- 17. Answer the same questions as in problem 15 for:
 - a. $y, y + 1 \cdot 5, y + 2 \cdot 5, y + 3 \cdot 5, ...$
 - b. $2 + 1 \cdot x, 2 + 2 \cdot x, 2 + 3 \cdot x, ...$
 - c. $y + 1 \cdot x, y + 2 \cdot x, y + 3 \cdot x, ...$
 - d. $y, y + 1 \cdot x, y + 2 \cdot x, y + 3 \cdot x, ...$
- **18.** Summary Explain how to calculate the n^{th} term of an arithmetic sequence, if you know the first term and the common difference. Test your method on several arithmetic sequences.

▼ 5.10

PREVIEW EQUATIONS

- **19.** For each equation, find values of x_1 , x_2 , and x_3 , that make it true.
 - a. $(x_1 + x_2 + x_3)/3 = 100$
 - b. $(x_1 + x_2 + x_3)/3 = 50$
 - c. $(x_1 + x_2 + x_3)/3 = 20$
 - d. $(x_1 + x_2 + x_3)/3 = 10$
- **20.** For each equation in problem 19, find another set of values for x_1 , x_2 , and x_3 that will work.
- **21.** If possible, find a value of x_3 to satisfy each equation.
 - a. $(15 + 20 + x_3)/3 = 100$
 - b. $(15 + 20 + x_3)/3 = 50$
 - c. $(15 + 20 + x_3)/3 = 20$
 - d. $(15 + 20 + x_3)/3 = 10$

PREVIEW ANOTHER ODD TRIANGLE

- 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
- 22. Look at the array of numbers above.
 - a. Write the next two rows.
 - b. Describe how the array is made.
- **23.** a. Look at the middle number in rows that have a middle number. What is the pattern?
 - b. In rows that do not have a middle number, think of the number between the middle two numbers. What is the pattern?
 - c. Find the sum of the numbers in each row. What is the pattern?
- 24. 🖓
 - a. What is the first number in the n^{th} row?
 - b. What is the last number in the n^{th} row?
 - c. What is the sum of all the numbers in
 - the first *n* rows?

