Wh MyMut

Definitions:

- Second-degree polynomial functions are also called quadratic functions.
- Graphs of quadratic functions have a special shape called a parabola.
- The lowest or highest point on a parabola is called its vertex.

Here are two quadratic functions and their graphs. Each one has two x-intercepts and one vertex.

1. What is the y-coordinate of the x-intercepts? What is the x-coordinate of the y-intercept?
2. For each parabola in the figure,
a. what are the x - and y-intercepts?
b. which x-intercept is the vertex closer to?

ENDINC NITRCEPISAND THE VERIEX
3. a. Copy and complete the table of values for the quadratic function $y=x^{2}+2 x-8$. Use at least six values from -5 to 5 . Using the format shown will help you avoid making mistakes in computation.

x	$x^{2}+2 x-8$	y
-5	$(-5)^{2}+2(-5)-8$	7
-4	-	-
\ldots	-	-
4	-	-
5		-

b. Use your table to make a graph of the function.
c. Label the intercepts and the vertex.
4. Repeat problem 3 for the function
$y=(x+4)(x-2)$.
5.
a. Compare your graphs in problems 3 and 4. Explain what you observe.
b. How are the x-intercepts related to the expression $(x+4)(x-2)$?
6. The quadratic function $y=x^{2}-6 x+8$ can be written in factored form as $y=(x-4)(x-2)$.
a. Make a table of values for this function, including the intercepts and the vertex.
b. Graph the function. Label the intercepts and the vertex.
c. How are the x-intercepts related to the expression $(x-4)(x-2)$?
d. How is the y-intercept related to the expression $x^{2}-6 x+8$?

For each problem, 7-10:
a. Write the function in factored form.
b. Make a table of values, including the intercepts and the vertex.
c. Graph the function, labeling the intercepts and the vertex.
7. $y=x^{2}-2 x-3$
8. $y=x^{2}+4 x+3$
9. $y=x^{2}-4 x+3$
10. $y=x^{2}+2 x-3$
11. Write the equation of a quadratic function whose graph would cross the x-axis at $(2,0)$ and $(-3,0)$. Explain how you know it will work.
12. Write the equation of a parabola having y-intercept -4 . Explain how you know it will work.
13. Generalization Consider functions of the form $y=x^{2}+b x+c$ that can be factored into $y=(x-p)(x-q)$.
a. How are b, c, p, and q related?
b. How would you find the coordinates of the intercepts?
c. How would you find the coordinates of the vertex?

SMILES AND FROWNS

14. Make a table of values for the quadratic function $y=(x-4)(x-1)$ and graph it.
15. Repeat for $y=-(x-4)(x-1)$.
16. Compare your graphs from problems 14-15. What is alike about the graphs and what is different? How do their x-intercepts and vertices compare?
17. Write an equation of a quadratic function whose graph satisfies these given conditions.
a. a smile parabola having x-intercepts $(3,0)$ and $(-2,0)$
b. a frown parabola having x-intercepts $(3,0)$ and $(-2,0)$
c. a smile parabola having x-intercepts $(-3,0)$ and $(-2,0)$
d. a frown parabola having x-intercepts $(-3,0)$ and $(-2,0)$
18. Explain how you know that your answers to problem 17 are correct. You may check your answers by making a table of values, and graphing.
19. $\$$ Write the equation of a quadratic function that passes through the origin and $(5,0)$. Explain.
20. Write an equation of a quadratic function whose graph satisfies the given conditions.
a. a parabola having one x-intercept at $(1,0)$ and the vertex with x-coordinate 2
b. a parabola having one x-intercept at $(1,0)$ and the vertex at $(2,1)$
c. a parabola having one x-intercept at $(1,0)$ and the vertex at $(2,2)$

HOW MANY x-INTERCEPTS?

21. Graph each of these four quadratic functions on the same axes.
a. $y=x^{2}+6 x+5$
b. $y=x^{2}+6 x+8$
c. $y=x^{2}+6 x+9$
d. $y=x^{2}+6 x+12$
22. Write a paragraph describing and comparing the graphs you drew in problem 21. Which graph or graphs have two x-intercepts? Which have one? Which have none? Could you have predicted this before graphing? Explain.
23. Consider the quadratic function $y=x^{2}+4 x+$ \qquad . Fill in the blank with a number that will give a function whose graph is
a. a parabola having one x-intercept;
b. a parabola having two x-intercepts;
c. a parabola having no x-intercepts.
24. Check your answers to problem 23 by graphing, or explain why you are sure you are correct.

15) ${ }^{\text {ES }}$ MAKING CHANGE

25. Find the largest number of pennies, nickels, and dimes that you can have and still not be able to make change for a quarter. Explain your answer.
26. Find the largest number of coins you can have and still not be able to make change for a dollar. (Assume that you can have any coins except a silver dollar.) Explain this answer.

1115 ITM ZEROING IN

27. If $a b=0, b c=0$, and $a c=1$, what is b ?
28. If $a b c=0$ and $b c d=1$, what conclusion can you draw? Explain.

1) SQUARE SUMS

29. Arrange the whole numbers from 1 to 18 into nine pairs, so that the sum of the numbers in each pair is a perfect square.
