Tir millive

graph paper

POINTS ONINES

1. Choose a number m, and draw the graph of the equation $y=m x$. Choose any point (a, b) on the line.
a. Is the point $(2 a, 2 b)$ on the line?
b. Is the point $(3 a, 3 b)$ on the line?
c. Is the point $(k a, k b)$ on the line for any value of k ?
2. Refer to the line you drew in problem 1.
a. Is the point $(a+1, b+1)$ on it?
b. Is the point $(a+k, b+k)$ on the line for any value of k ?
3. Feport Repeat problems 1 and 2 for several graphs of the form $y=m x, y=x+b$, and $y=m x+b$. If a point (a, b) is on the line, in what case is ($k a, k b$) on the line? What about $(a+k, b+k)$?

AROMEUNCIIOAS

4. The graph shows $y=2 x$. The region between the line and the x-axis from $x=0$ to $x=6$ is shaded.
a. What is the area of the shaded region?
b. What is the area of the region between the line and the x-axis from $x=0$ to $x=4$?

Endpoint	Area
$x=1$	
$x=2$	
$x=3$	
$x=5$	
$x=a$	

5. Copy and complete the table giving the area between the line and the x-axis from $x=0$ to the given endpoint value of x.
6. Find a function relating the area to the endpoint value of x.
7. Is the area function you wrote an example of direct variation? Explain.

Endpoint	Area
$x=1$	
$x=2$	
$x=5$	
$x=a$	

8. The graph shows the line $y=3$. Copy and complete the table giving the area between the line and the x-axis from $x=0$ to the given endpoint value of x.

9. Find a function relating the area to the endpoint value of x.
10. Is the area function you wrote an example of direct variation? Explain.
11. Report Repeat problems 4 through 7 for several other lines. For which lines did you find area functions that are examples of direct variation? What generalizations can you make? Write an illustrated report about your results.
