First we will use functions to create codes. Later we will use functions to break codes. Assign a number to each letter of the alphabet. A is $1, \mathrm{~B}$ is 2 , and so on.

Definition: The text of a message, before it is encoded, is called the plaintext.

The easiest code works by replacing each letter by one that follows it at a certain distance in the alphabet. For example, A (letter 1) is replaced with H (letter 8), B (2) is replaced with I (9), and so on. The function used in this example is $y=7+x$, where x is the number of the plaintext letter, and y is the number of the coded letter.

If the number of the coded letter is greater than 26 , subtract 26 from it. For example, V's number is $22,22+7=29,29-26=3$, so the code letter for V is C .

1. Copy and complete this table to show the $y=7+x$ code.

Plaintext	Code
A	H
B	I
C	\cdots

2. Use $y=7+x$ to encode the words smile, juggle, dance, puzzl
3. Choose a number, b, and use $y=b+x$ encode a message for a classmate. (Let classmate know the value of b so he or will be able to decode the message quickly.)
4. Decode the following message, which r been encoded with $y=10+x$.
DRSC COXDOXMO ECOC RKVP DRO VODDOBC SX DRO KVZRKLOD.
5. Find the function that would decode the message in problem 4. Check your ansv by actually using it on DRSC, and makiı sure it gives the expected plaintext.
6. a. Use the function $y=27-x$ to enco these names.
Bernard, Carol, Ellen, Pet
b. Describe in words the code obtained from this function.
7. a. Encode your name with $y=30-x$.
b. Now take the answer to (a) and enco it with $y=30-x$ again.
c. Comment on the result in (b).
8. a. Encode the word bilingual with $y=8-x$ and then with $y=x-8$.
Do you get the same answer? Explai
b. Find a decoding function for each fu: tion in part (a).
9. Repon In this lesson you learned about t kinds of coding functions. Some look lik $y=7+x$, and others look like $y=8-$ Write a report on how to decode messagt coded by each kind of function and also functions like $y=x-8$. Give examples using other numbers for each of the three kinds of functions. Mention any special numbers. (For example, what happens when $y=x+26$?)
