

In problems 3-4 you may want to make sketches or use the Lab Gear.

- 3. Simplify. (Add and combine like terms.) a. $(y^2 + x^2 - 3y) + (y + 3x^2 - x^2)$ b. $x + (25 - yx - y^2) + (xy - y - x)$
- **4.** Simplify. (Subtract; combine like terms.)
 - a. $(4 x^2 5x) 3x 2$
 - b. $(4 x^2 + 5x) (3x 2)$
 - c. $(4 + x^2 5x) (3x + 2)$
 - d. $(-4 x^2 5x) (-3x + 2)$

MULTIPLYING

In problems 5-8 you may want to make sketches or use the Lab Gear.

5. Multiply.

a. $2x \cdot 4x$ b. $5x \cdot 6y$ c. $3xy \cdot 10$

- 6. The quantity 36xy can be written as the product $9x \cdot 4y$. Write 36xy as a product in at least four other ways.
- 7. Multiply.
 - a. 2(x + y 5) b. x(x + y + 5)c. x(-x + y + 5)

numbers. (In some cases, the missing numbers may be difficult to find; use

c. Use the rule to find the missing

y from x.

- trial and error and a calculator to mak it easier.)
- d. Write y as a function of x.

x	y	x	у	x	у
1	-7	3	4	5	2
4	28	12	1	an weather the second	4
0		6	2	1	6
	7		5		-1

- **13.** a. Make a function diagram in which th output (y) is always 4 more than the input (x).
 - b. Write a rule (function) for your funct diagram.

14. a. Make a function diagram in which 18

the output (y) is always 4 times the input (x).

- b. Write a rule (function) for your function diagram.
- **15.** Make a function diagram with *time* on the *x*-number line (show one hour from the bottom to the top), and *distance* on the *y*-number line, to represent the motion of a cyclist riding at a constant speed of 15 miles per hour. Your diagram should have five in-out lines.

PATTERNS AND FUNCTIONS

- **16.** Look at the sequence of figures. Think about how it would continue, following the pattern. Then:
 - a. Sketch the next figure in the sequence.
 - b. Copy and complete a table like the one below.
 - c. Describe the pattern in words.

Perimeter	
•••	
•••	

•••	
•••	

Repeat problem 16 for these sequences.

- **21.** In problem 16, what figure would have a perimeter of 88x + 2? Use trial and error if necessary.
- **22.** Which sequence in problems 17-20, if any, contains a perimeter of
 - a. 2x + 100?
 - b. 100x + 2?
 - c. 100x + 100?
- **23.** \bigcirc Look at the *xy*-block.
 - a. What is the perimeter of its top face?
 - b. What is its perimeter if y = 1, 2, 3, 4, 10? (Do not substitute a number for *x*.) Arrange your answers in a table.
 - c. Compare your table with those in problems 16-20. It should be the same as one of them. Which one? Explain.
- 24. We blue blocks to make a figure.Substitute 1, 2, 3, ... for y in its perimeter to get the same sequence as problem 18. Check your work; make a table.

GEOBOARD TRIANGLES

- **25.** On dot paper, sketch triangles having area 18, and having
 - a. one horizontal and one vertical side;
 - b. one horizontal side, no vertical side;
 - c. no horizontal or vertical side.

