

- 1. Look at this sequence of block figures. Think about how it would continue, following the pattern. Then:
 - a. Sketch the next figure in the sequence.

- b. Copy and complete the table below.
- c. Describe the pattern in words.

Figure #	Perimeter
1	4
2	6
3	8
4	•••
10	
100	
п	

Repeat problem 1 for each of these sequences.

2. 3.

If you have trouble answering questions 7-8 by trial and error, try making graphs from the data in your tables, with the figure number (*n*) on the horizontal axis and the perimeter on the vertical axis.

- 7. In problem 1, which figure would have perimeter 50?
- 8. Is it possible to have perimeter 50 for any of the patterns in problems 2-6?

▼2.10

- 9. Look at the *x*-block.
 - a. What is the perimeter of its top face?
 - b. What is its perimeter if x = 1, 2, 3, 4, 10? Make a table like the ones above.
 - c. Compare your table with those in problems 1-6. It should be the same as one of them. Which one? Explain why you think this works.

- 10. a. This figure represents the tops of five *x*-blocks. What is its perimeter?
 - b. What is its perimeter if x = 1, 2, 3, 4, 10? Make a table like the ones above.
 - c. This figure is related to one of problems 2-6. Which one? Explain.

Note that in problems 9 and 10, just one figure represents a whole infinite sequence of figures, because of the use of variables.

- **11.** Find the blue block that is related to problem 3. Explain.
- 12. For each of problems 4-6, build a related figure made of blue blocks. Check your answer by making a table.

- **13.** Look at the sequence of cube figures. Think about how it would continue, following the pattern. Then:
 - a. Sketch the next figure in the sequence.
 - b. Copy and complete the following table.

n m m

c. Describe the pattern in words.

Figure #	Surface Area
1	6
2	10
3	14
4	
10	
100	
n	

Repeat problem 13 for each of these sequences.

17. For each of problems 13-16, build a related figure made of blue blocks. Checkyour answers by making a table.

MORE SURFACE AREA

- 18. Look at the sequence. Think about how i continues, following the pattern. Then:a. Sketch the next figure.
 - b. Make a table like the following one.

2.10

Figure #	Surface Area
1	4x + 2
2	8x + 2
3	12x + 2
4	
10	•••
100	•••

c. Describe the pattern in words.

Repeat problem 18 for each of these sequences.

22. Make a figure out of blue blocks such that by substituting 1, 2, 3, ... for y in its surface area you get the same sequence as you did in problem 19. Check your work by making a table.

GAME SPROUTS

This is a game for two players. Start with three dots on a piece of paper. These represent towns. Players take turns. To make a move:

- Join a town to itself or to another town with a *road* (a line).
- Place another town somewhere on the road you just created.

Rules:

- A road cannot cross itself, another road, or an existing town.
- No town can have more than three roads coming out of it.

The winner is the last person able to make a legal move.

- 23. Play the game with a classmate.
- 24. What is the maximum number of moves possible in a game?