

ADDITION

1. Draw a function diagram to represent each of these functions.
a. $y=x+6$
b. $y=x+3$
c. Compare the two diagrams. How are they alike? How are they different?

The two function diagrams you just drew both represented functions of the form $y=x+b$, where b is a constant. In the first case, b was 6 . In the second case, b was 3 .
2. Draw three other function diagrams of the form $y=x+b$. Be sure to try at least one negative value of b.
3. a. Draw a function diagram for the function $y=x$.
b. The function $y=x$ is also of the form $y=x+b$. What is b ?
4. The function diagrams you drew in problems 1-3 represent addition. In each case, to get the value of y, you added the number b to x. How are all of these diagrams alike? How are they different? How does the value of b affect the diagram?

MULTIPLICATION

5. Draw a function diagram to represent each of these functions.
a. $y=2 x$
b. $y=3 x$
c. Compare the two diagrams. How are they alike? How are they different?

The two function diagrams you just drew both represented functions of the form $y=m x$, where m is a constant. In the first case, m was 2 . In the second case, m was 3 .
6. Draw three other function diagrams of the form $y=m x$. Be sure to try at least one negative value of m and one value of m between 0 and 1 .
7. The function $y=x$, for which you already have a diagram, is also of the form $y=m x$. What is m ?
8. The function diagrams you just drew represent multiplication. In each case, to get the value of y you multiplied x by a number. How are all of these diagrams the same? How are they different?
9. Look at your multiplication diagrams. For each one, as the value of x increases from the bottom of its number line, follow the value of y on its number line with your finger.
a. For what values of m does the value of y go up? Down?
b. Is there a value of m for which y goes neither up nor down, but remains unchanged?
c. For what values of m does the value of y change faster than x ? More slowly?
d. Is there a value of m for which y changes at the same rate as x ?

MIRROR IMAGE DIAGRAMS

The two function diagrams above are mirror images of each other.
10. Explain how to draw the mirror image of a function diagram.

For each of the following functions:
a. Draw the function diagram, using the same scale on the x - and y-number lines.
b. Draw the mirror image diagram.
c. Find the function corresponding to the mirror image.
11. $y=x+3$
12. $y=4 x$
13. $y=x-4$
14. $y=x / 3$
15. Explain the relationship between the function corresponding to the mirror image and the original function.
16. Report Write a report summarizing what you learned in this lesson. Illustrate your report with examples of function diagrams. Your report should include, but ni be limited to, answers to the following questions:

- Addition can be represented by functions of the form $y=x+b$. What do their function diagrams look like if $b=0$? What if b is greater than 0 ? Less than 0 ?
- Subtraction can be represented by func tions of the form $y=x-b$. How do their function diagrams compare with those of addition?
- Multiplication can be represented by functions of the form $y=m x$. What do their function diagrams look like if m i: negative? If m is positive? What if m is number between 0 and 1?
- Division can be represented by functios of the form $y=x / m$. How do their funs tion diagrams compare with those of multiplication? What if m is positive? Negative? What if m is a number between 0 and 1?

17. Compare function diagrams of the form $y=b-x$ with those of the form $y=x-b$.
