You will iect:

ADDITION

Using the Lab Gear, the addition $y+5$ can be modeled in two ways. You can show two collections of blocks, y and 5. Or you can line up the blocks to get a figure that has length $y+5$. Both methods are shown here.

1. Sketch this addition both ways, $3 x+2$.

MULTIPIICATION

The multiplication $3 \cdot(2 x+1)$ can be modeled in two ways. One way is to show three collections of $2 x+1$.

As you can see in the figure, $3 \cdot(2 x+1)=6 x+3$.

The other way is to use the corner piece. First set up the factors (3 and $2 x+1$) on the outside.

Then make a rectangle having those dimensions.

The rectangle represents the product. Again you see that $3 \cdot(2 x+1)=6 x+3$. This is the familiar length \cdot width $=$ area formula for a rectangle.
2. Sketch this multiplication two ways, $2 \cdot(x+3)$.
a. Use collections of blocks.
b. Use the corner piece.
3. What were the length, width, and area of the rectangle in problem 2 ?

With any factors of degree 0 or 1 , you can model the multiplication in the corner piece.
4. What multiplication is shown in this figure?

5. Multiplying the x by the x gave x^{2}. What other multiplications do you see in the figure above?
6. Multiply with the corner piece.
a. $3 x \cdot 2$
b. $3 \cdot 2 x$
c. $2 x \cdot 3$
d. $2 x \cdot 3 y$
7. Multiply with the corner piece.
a. $5(x+1)$
b. $x(x+3)$
8. Find the area of a rectangle having the sides given below. For each write an equation of the form length times width $=$ area.
a. 5 and $x+3$
b. x and $2 x+5$
9. Find the sides of a rectangle having the given area. Each problem has at least two solutions. Find as many of them as you can and write an equation for each.
a. $6 x$
b. $6 x^{2}+3 x$
10. These equations are of the form length times width $=$ area. Use the Lab Gear to help you fill in the blanks.
a. $y \cdot$ \qquad $=y^{2}+x y$
b. $(x+2) \cdot=3 x+6$
c. \qquad $+3) \cdot x=2 x y+3 x$

Understanding the area model of multiplication will help you avoid many common algebra errors.

ORDER OE ORERATIONS

The figure above showed a multiplication. Some students write it like this: $x+1 \cdot x+y$. Unfortunately, someone else might read it as add the three terms: $x, 1 \cdot x$, and y. Simplified, this would be $x+x+y$, or $2 x+y$. But the intended meaning was equivalent to $x^{2}+x y+x+y$, as you can see on the figure. To avoid this kind of confusion, mathematicians have agreed on the following rule.

Rule: When the operations of multiplication and addition (or subtraction) appear in the same expression, multiplication should be performed first. If we want to change this order, we have to use parentheses.

This means that one correct way to write the multiplication in the figure is $(x+1)(x+y)$, which can mean only multiply $x+1$ by $x+y$.
11. a. Show $2 \cdot x+5$ with the Lab Gear. Sketch.
b. Next to your sketch show $2 \cdot(x+5)$ with the Lab Gear. Sketch it. Keep the blocks on the table for the next problem.
12. a. Copy both collections of blocks from problem 11, substituting 1 for x. What is each expression equal to?
b. Repeat, using 5 for x.
c. Repeat, using 0 for x.
13. Can you find a value of x for which $2 \cdot x+5=2 \cdot(x+5)$? If so, what is the value? If not, why can't you find a value?
14. Exploration Insert parentheses in each expression, so as to get many different values. What are the greatest and smallest values you can find for each one?
a. $0 \cdot 1+2 \cdot 3+4 \cdot 5+6 \cdot 7+8 \cdot 9$
b. $0+1 \cdot 2+3 \cdot 4+5 \cdot 6+7 \cdot 8+9$

THE SNME OA DITHRENTR

Students sometimes confuse $3+x$ with $3 x$. With the Lab Gear, it is easy to see the difference. $3+x$ involves addition.

$3 x$ involves multiplication.

15. Find the value of $3+x$ when:
a. $x=0$
b. $x=5$
c. $x=0.5$
16. Find the value of $3 x$ when :
a. $x=0$
b. $x=5$
c. $x=0.5$
17. For most values of $x, 3 x$ does not equal $3+x$. In fact there is only one number you can substitute for x that will make $3+x$ equal to $3 x$. Use trial and error to find this number.
18. Build these expressions with the Lab Gear. Sketch. Which two are the same?
a. $6 x y$
b. $2 x+3 y$
c. $2 x \cdot 3 y$
d. $5 x y$
19. Build and sketch these two expressions with the Lab Gear.
a. $2 x+3 y$
b. $2 x y+3$
20. Use trial and error to find a pair of values of x and y that will make the two expressions in problem 19 have the same value.
21. Use the Lab Gear to show each expression. Sketch.
a. $5+x+y$
b. $5+x y$
c. $5 x+y$
d. $5 x y$
22. Choose values for x and y so that all four expressions in problem 21 have different values.

